Suppr超能文献

Li2O2 中的电导率及其在非水 Li-O2 电池中确定容量限制的作用。

Electrical conductivity in Li2O2 and its role in determining capacity limitations in non-aqueous Li-O2 batteries.

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California 94305-5025, USA.

出版信息

J Chem Phys. 2011 Dec 7;135(21):214704. doi: 10.1063/1.3663385.

Abstract

Non-aqueous Li-air or Li-O(2) cells show considerable promise as a very high energy density battery couple. Such cells, however, show sudden death at capacities far below their theoretical capacity and this, among other problems, limits their practicality. In this paper, we show that this sudden death arises from limited charge transport through the growing Li(2)O(2) film to the Li(2)O(2)-electrolyte interface, and this limitation defines a critical film thickness, above which it is not possible to support electrochemistry at the Li(2)O(2)-electrolyte interface. We report both electrochemical experiments using a reversible internal redox couple and a first principles metal-insulator-metal charge transport model to probe the electrical conductivity through Li(2)O(2) films produced during Li-O(2) discharge. Both experiment and theory show a "sudden death" in charge transport when film thickness is ~5 to 10 nm. The theoretical model shows that this occurs when the tunneling current through the film can no longer support the electrochemical current. Thus, engineering charge transport through Li(2)O(2) is a serious challenge if Li-O(2) batteries are ever to reach their potential.

摘要

非水合锂空气或锂-氧(2)电池作为一种具有非常高能量密度的电池对具有很大的应用前景。然而,这类电池在远远低于其理论容量的容量下会突然失效,这除了其他问题外,限制了它们的实用性。在本文中,我们表明这种突然失效是由于通过生长的 Li(2)O(2)薄膜到 Li(2)O(2)-电解质界面的电荷传输有限所致,这种限制定义了一个临界薄膜厚度,超过该厚度,在 Li(2)O(2)-电解质界面处就不可能支持电化学。我们报告了使用可逆内部氧化还原对的电化学实验和第一个原理金属-绝缘体-金属电荷输运模型来探测在 Li-O(2)放电过程中产生的 Li(2)O(2)薄膜的电导率。实验和理论都表明,当薄膜厚度约为 5 至 10nm 时,电荷传输会出现“突然死亡”。理论模型表明,当通过薄膜的隧道电流无法再支持电化学电流时,就会发生这种情况。因此,如果要使锂-氧(2)电池达到其潜力,那么通过 Li(2)O(2)进行电荷传输的工程设计是一个严峻的挑战。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验