Suppr超能文献

TRM:一种用于识别单核苷酸多态性(SNP)-SNP相互作用的强大的两阶段机器学习方法。

TRM: a powerful two-stage machine learning approach for identifying SNP-SNP interactions.

作者信息

Lin Hui-Yi, Chen Y Ann, Tsai Ya-Yu, Qu Xiaotao, Tseng Tung-Sung, Park Jong Y

机构信息

H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.

出版信息

Ann Hum Genet. 2012 Jan;76(1):53-62. doi: 10.1111/j.1469-1809.2011.00692.x. Epub 2011 Dec 11.

Abstract

Studies have shown that interactions of single nucleotide polymorphisms (SNPs) may play an important role in understanding the causes of complex disease. We have proposed an integrated machine learning method that combines two machine-learning methods-Random Forests (RF) and Multivariate Adaptive Regression Splines (MARS)-to identify a subset of important SNPs and detect interaction patterns more effectively and efficiently. In this two-stage RF-MARS (TRM) approach, RF is first applied to detect a predictive subset of SNPs, and then MARS is used to identify the interaction patterns. We evaluated the TRM performances in four models. RF variable selection was based on out-of-bag classification error rate (OOB) and variable important spectrum (IS). Our results support that RF(OOB) had better performance than MARS and RF(IS) in detecting important variables. This study demonstrates that TRM(OOB) , which is RF(OOB) plus MARS, has combined the strengths of RF and MARS in identifying SNP-SNP interactions in a scenario of 100 candidate SNPs. TRM(OOB) had greater true positive rate and lower false positive rate compared with MARS, particularly for searching interactions with a strong association with the outcome. Therefore, the use of TRM(OOB) is favored for exploring SNP-SNP interactions in a large-scale genetic variation study.

摘要

研究表明,单核苷酸多态性(SNP)的相互作用可能在理解复杂疾病的病因中发挥重要作用。我们提出了一种集成机器学习方法,该方法结合了两种机器学习方法——随机森林(RF)和多元自适应回归样条(MARS),以更有效且高效地识别重要SNP的子集并检测相互作用模式。在这种两阶段的RF-MARS(TRM)方法中,首先应用RF来检测SNP的预测子集,然后使用MARS来识别相互作用模式。我们在四个模型中评估了TRM的性能。RF变量选择基于袋外分类错误率(OOB)和变量重要性谱(IS)。我们的结果支持RF(OOB)在检测重要变量方面比MARS和RF(IS)具有更好的性能。本研究表明,TRM(OOB),即RF(OOB)加MARS,在100个候选SNP的情况下结合了RF和MARS在识别SNP-SNP相互作用方面的优势。与MARS相比,TRM(OOB)具有更高的真阳性率和更低的假阳性率,特别是在搜索与结果有强关联的相互作用时。因此,在大规模遗传变异研究中探索SNP-SNP相互作用时,倾向于使用TRM(OOB)。

相似文献

引用本文的文献

7
Detecting epistasis in human complex traits.检测人类复杂性状中的上位性。
Nat Rev Genet. 2014 Nov;15(11):722-33. doi: 10.1038/nrg3747. Epub 2014 Sep 9.

本文引用的文献

7
Aromatase and regulating the estrogen:androgen ratio in the prostate gland.芳香酶与前列腺内的雌激素/雄激素比值的调节。
J Steroid Biochem Mol Biol. 2010 Feb 28;118(4-5):246-51. doi: 10.1016/j.jsbmb.2009.10.015. Epub 2009 Nov 5.
10
Cytokine genetic polymorphisms and prostate cancer aggressiveness.细胞因子基因多态性与前列腺癌侵袭性
Carcinogenesis. 2009 Aug;30(8):1358-62. doi: 10.1093/carcin/bgp124. Epub 2009 May 27.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验