Lin Hui-Yi, Chen Dung-Tsa, Huang Po-Yu, Liu Yung-Hsin, Ochoa Augusto, Zabaleta Jovanny, Mercante Donald E, Fang Zhide, Sellers Thomas A, Pow-Sang Julio M, Cheng Chia-Ho, Eeles Rosalind, Easton Doug, Kote-Jarai Zsofia, Amin Al Olama Ali, Benlloch Sara, Muir Kenneth, Giles Graham G, Wiklund Fredrik, Gronberg Henrik, Haiman Christopher A, Schleutker Johanna, Nordestgaard Børge G, Travis Ruth C, Hamdy Freddie, Pashayan Nora, Khaw Kay-Tee, Stanford Janet L, Blot William J, Thibodeau Stephen N, Maier Christiane, Kibel Adam S, Cybulski Cezary, Cannon-Albright Lisa, Brenner Hermann, Kaneva Radka, Batra Jyotsna, Teixeira Manuel R, Pandha Hardev, Lu Yong-Jie, Park Jong Y
Biostatistics Program, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, USA.
Department of Biostatistics and Bioinformatics, Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
Bioinformatics. 2017 Mar 15;33(6):822-833. doi: 10.1093/bioinformatics/btw762.
Testing SNP-SNP interactions is considered as a key for overcoming bottlenecks of genetic association studies. However, related statistical methods for testing SNP-SNP interactions are underdeveloped.
We propose the SNP Interaction Pattern Identifier (SIPI), which tests 45 biologically meaningful interaction patterns for a binary outcome. SIPI takes non-hierarchical models, inheritance modes and mode coding direction into consideration. The simulation results show that SIPI has higher power than MDR (Multifactor Dimensionality Reduction), AA_Full, Geno_Full (full interaction model with additive or genotypic mode) and SNPassoc in detecting interactions. Applying SIPI to the prostate cancer PRACTICAL consortium data with approximately 21 000 patients, the four SNP pairs in EGFR-EGFR , EGFR-MMP16 and EGFR-CSF1 were found to be associated with prostate cancer aggressiveness with the exact or similar pattern in the discovery and validation sets. A similar match for external validation of SNP-SNP interaction studies is suggested. We demonstrated that SIPI not only searches for more meaningful interaction patterns but can also overcome the unstable nature of interaction patterns.
The SIPI software is freely available at http://publichealth.lsuhsc.edu/LinSoftware/ .
Supplementary data are available at Bioinformatics online.
检测单核苷酸多态性(SNP)-SNP相互作用被视为克服基因关联研究瓶颈的关键。然而,用于检测SNP-SNP相互作用的相关统计方法尚不完善。
我们提出了SNP相互作用模式识别器(SIPI),它可以针对二元结局检测45种具有生物学意义的相互作用模式。SIPI考虑了非层次模型、遗传模式和模式编码方向。模拟结果表明,在检测相互作用方面,SIPI比多因素降维法(MDR)、AA_Full、Geno_Full(具有加性或基因型模式的全相互作用模型)和SNPassoc具有更高的效能。将SIPI应用于约21000名患者的前列腺癌PRACTICAL联盟数据,发现表皮生长因子受体(EGFR)-EGFR、EGFR-基质金属蛋白酶16(MMP16)和EGFR-集落刺激因子1(CSF1)中的四对SNP与前列腺癌侵袭性相关,在发现集和验证集中具有确切或相似的模式。这表明SNP-SNP相互作用研究的外部验证具有相似的匹配度。我们证明,SIPI不仅能搜索到更有意义的相互作用模式,还能克服相互作用模式的不稳定性。
SIPI软件可在http://publichealth.lsuhsc.edu/LinSoftware/免费获取。
补充数据可在《生物信息学》在线获取。