Suppr超能文献

基于双字典的正视图图像重建。

Fair-view image reconstruction with dual dictionaries.

机构信息

Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

出版信息

Phys Med Biol. 2012 Jan 7;57(1):173-89. doi: 10.1088/0031-9155/57/1/173.

Abstract

In this paper, we formulate the problem of computed tomography (CT)under sparsity and few-view constraints, and propose a novel algorithm for image reconstruction from few-view data utilizing the simultaneous algebraic reconstruction technique (SART) coupled with dictionary learning, sparse representation and total variation (TV) minimization on two interconnected levels. The main feature of our algorithm is the use of two dictionaries: a transitional dictionary for atom matching and a global dictionary for image updating. The atoms in the global and transitional dictionaries represent the image patches from high-quality and low-quality CT images, respectively.Experiments with simulated and real projections were performed to evaluate and validate the proposed algorithm. The results reconstructed using the proposed approach are significantly better than those using either SART or SART–TV.

摘要

在本文中,我们针对计算层析成像(CT)在稀疏和少视角约束下的问题进行了研究,并提出了一种新的算法,用于利用同时代数重建技术(SART)与字典学习、稀疏表示和总变分(TV)最小化相结合,从少视角数据中进行图像重建。我们算法的主要特点是使用两个字典:一个用于原子匹配的过渡字典和一个用于图像更新的全局字典。全局字典和过渡字典中的原子分别表示高质量和低质量 CT 图像的图像块。对模拟和真实投影进行了实验,以评估和验证所提出的算法。使用所提出的方法重建的结果明显优于使用 SART 或 SART-TV 的结果。

相似文献

1
Fair-view image reconstruction with dual dictionaries.
Phys Med Biol. 2012 Jan 7;57(1):173-89. doi: 10.1088/0031-9155/57/1/173.
2
Few-view CT reconstruction with group-sparsity regularization.
Int J Numer Method Biomed Eng. 2018 Sep;34(9):e3101. doi: 10.1002/cnm.3101. Epub 2018 Jun 11.
3
Image reconstruction from few-view CT data by gradient-domain dictionary learning.
J Xray Sci Technol. 2016 May 21;24(4):627-38. doi: 10.3233/XST-160579.
9
Adaptive-weighted high order TV algorithm for sparse-view CT reconstruction.
Med Phys. 2023 Sep;50(9):5568-5584. doi: 10.1002/mp.16371. Epub 2023 Apr 6.
10
Reconstruction of sparse-view X-ray computed tomography using adaptive iterative algorithms.
Comput Biol Med. 2015 Jan;56:97-106. doi: 10.1016/j.compbiomed.2014.11.001. Epub 2014 Nov 8.

引用本文的文献

1
Extreme Few-View Tomography without Training Data.
Biomed J Sci Tech Res. 2024;55(2):46779-46884. doi: 10.26717/bjstr.2024.55.008672. Epub 2024 Feb 23.
2
Bilateral Weighted Relative Total Variation for Low-Dose CT Reconstruction.
J Digit Imaging. 2023 Apr;36(2):458-467. doi: 10.1007/s10278-022-00720-w. Epub 2022 Nov 28.
4
Accelerated Stimulated Raman Projection Tomography by Sparse Reconstruction From Sparse-View Data.
IEEE Trans Biomed Eng. 2020 May;67(5):1293-1302. doi: 10.1109/TBME.2019.2935301. Epub 2019 Aug 14.
5
Regularization strategies in statistical image reconstruction of low-dose x-ray CT: A review.
Med Phys. 2018 Oct;45(10):e886-e907. doi: 10.1002/mp.13123. Epub 2018 Sep 10.
6
Super-resolution CT Image Reconstruction Based on Dictionary Learning and Sparse Representation.
Sci Rep. 2018 Jun 11;8(1):8799. doi: 10.1038/s41598-018-27261-z.
7
Statistical Iterative CBCT Reconstruction Based on Neural Network.
IEEE Trans Med Imaging. 2018 Jun;37(6):1511-1521. doi: 10.1109/TMI.2018.2829896.
8
PWLS-ULTRA: An Efficient Clustering and Learning-Based Approach for Low-Dose 3D CT Image Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1498-1510. doi: 10.1109/TMI.2018.2832007.
9
LEARN: Learned Experts' Assessment-Based Reconstruction Network for Sparse-Data CT.
IEEE Trans Med Imaging. 2018 Jun;37(6):1333-1347. doi: 10.1109/TMI.2018.2805692.
10
Frame-Based CT Image Reconstruction via the Balanced Approach.
J Healthc Eng. 2017;2017:1417270. doi: 10.1155/2017/1417270. Epub 2017 Sep 17.

本文引用的文献

1
MR image reconstruction from highly undersampled k-space data by dictionary learning.
IEEE Trans Med Imaging. 2011 May;30(5):1028-41. doi: 10.1109/TMI.2010.2090538. Epub 2010 Nov 1.
2
A soft-threshold filtering approach for reconstruction from a limited number of projections.
Phys Med Biol. 2010 Jul 7;55(13):3905-16. doi: 10.1088/0031-9155/55/13/022.
3
Image super-resolution via sparse representation.
IEEE Trans Image Process. 2010 Nov;19(11):2861-73. doi: 10.1109/TIP.2010.2050625. Epub 2010 May 18.
4
SART-type image reconstruction from a limited number of projections with the sparsity constraint.
Int J Biomed Imaging. 2010;2010:934847. doi: 10.1155/2010/934847. Epub 2010 Apr 26.
6
A general local reconstruction approach based on a truncated hilbert transform.
Int J Biomed Imaging. 2007;2007:63634. doi: 10.1155/2007/63634.
7
Image denoising via sparse and redundant representations over learned dictionaries.
IEEE Trans Image Process. 2006 Dec;15(12):3736-45. doi: 10.1109/tip.2006.881969.
8
Generalized principal component analysis (GPCA).
IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1945-59. doi: 10.1109/TPAMI.2005.244.
9
Simultaneous algebraic reconstruction technique (SART): a superior implementation of the art algorithm.
Ultrason Imaging. 1984 Jan;6(1):81-94. doi: 10.1177/016173468400600107.
10
Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography.
J Theor Biol. 1970 Dec;29(3):471-81. doi: 10.1016/0022-5193(70)90109-8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验