Department of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
Phys Med Biol. 2012 Jan 7;57(1):173-89. doi: 10.1088/0031-9155/57/1/173.
In this paper, we formulate the problem of computed tomography (CT)under sparsity and few-view constraints, and propose a novel algorithm for image reconstruction from few-view data utilizing the simultaneous algebraic reconstruction technique (SART) coupled with dictionary learning, sparse representation and total variation (TV) minimization on two interconnected levels. The main feature of our algorithm is the use of two dictionaries: a transitional dictionary for atom matching and a global dictionary for image updating. The atoms in the global and transitional dictionaries represent the image patches from high-quality and low-quality CT images, respectively.Experiments with simulated and real projections were performed to evaluate and validate the proposed algorithm. The results reconstructed using the proposed approach are significantly better than those using either SART or SART–TV.
在本文中,我们针对计算层析成像(CT)在稀疏和少视角约束下的问题进行了研究,并提出了一种新的算法,用于利用同时代数重建技术(SART)与字典学习、稀疏表示和总变分(TV)最小化相结合,从少视角数据中进行图像重建。我们算法的主要特点是使用两个字典:一个用于原子匹配的过渡字典和一个用于图像更新的全局字典。全局字典和过渡字典中的原子分别表示高质量和低质量 CT 图像的图像块。对模拟和真实投影进行了实验,以评估和验证所提出的算法。使用所提出的方法重建的结果明显优于使用 SART 或 SART-TV 的结果。