Department of Cardiology, Children's Hospital Boston, MA, USA.
Circ Res. 2012 Feb 3;110(3):406-15. doi: 10.1161/CIRCRESAHA.111.252205. Epub 2011 Dec 8.
Epigenetic marks are crucial for organogenesis, but their role in heart development is poorly understood. Polycomb repressive complex 2 (PRC2) trimethylates histone H3 at lysine 27, which establishes H3K27me3 repressive epigenetic marks that promote tissue-specific differentiation by silencing ectopic gene programs.
We studied the function of PRC2 in murine heart development using a tissue-restricted conditional inactivation strategy.
Inactivation of the PRC2 subunit Ezh2 by Nkx2-5(Cre) (Ezh2(NK)) caused lethal congenital heart malformations, namely, compact myocardial hypoplasia, hypertrabeculation, and ventricular septal defect. Candidate and genome-wide RNA expression profiling and chromatin immunoprecipitation analyses of Ezh2(NK) heart identified genes directly repressed by EZH2. Among these were the potent cell cycle inhibitors Ink4a/b (inhibitors of cyclin-dependent kinase 4 A and B), the upregulation of which was associated with decreased cardiomyocyte proliferation in Ezh2(NK). EZH2-repressed genes were enriched for transcriptional regulators of noncardiomyocyte expression programs such as Pax6, Isl1, and Six1. EZH2 was also required for proper spatiotemporal regulation of cardiac gene expression, because Hcn4, Mlc2a, and Bmp10 were inappropriately upregulated in ventricular RNA. PRC2 was also required later in heart development, as indicated by cardiomyocyte-restricted TNT-Cre inactivation of the PRC2 subunit Eed. However, Ezh2 inactivation by TNT-Cre did not cause an overt phenotype, likely because of functional redundancy with Ezh1. Thus, early Ezh2 inactivation by Nk2-5(Cre) caused later disruption of cardiomyocyte gene expression and heart development.
Our study reveals a previously undescribed role of EZH2 in regulating heart formation and shows that perturbation of the epigenetic landscape early in cardiogenesis has sustained disruptive effects at later developmental stages.
表观遗传标记对于器官发生至关重要,但它们在心脏发育中的作用知之甚少。多梳抑制复合物 2 (PRC2) 在组蛋白 H3 的赖氨酸 27 位三甲基化,形成 H3K27me3 抑制性表观遗传标记,通过沉默异位基因程序促进组织特异性分化。
我们使用组织特异性条件性失活策略研究了 PRC2 在小鼠心脏发育中的功能。
通过 Nkx2-5(Cre)(Ezh2(NK))使 PRC2 亚基 Ezh2 失活导致致命的先天性心脏畸形,即致密心肌发育不良、心肌小梁过度增生和室间隔缺损。Ezh2(NK)心脏的候选基因和全基因组 RNA 表达谱及染色质免疫沉淀分析鉴定了 EZH2 直接抑制的基因。其中包括强效细胞周期抑制剂 Ink4a/b(细胞周期蛋白依赖性激酶 4A 和 B 的抑制剂),其上调与 Ezh2(NK)中心肌细胞增殖减少有关。EZH2 抑制的基因富集了非心肌细胞表达程序的转录调节因子,如 Pax6、Isl1 和 Six1。EZH2 还需要正确调节心脏基因表达的时空调控,因为 Hcn4、Mlc2a 和 Bmp10 在心室 RNA 中过度上调。PRC2 也在心脏发育后期需要,如 TNT-Cre 心肌细胞特异性失活 PRC2 亚基 Eed 所示。然而,TNT-Cre 引起的 Ezh2 失活并未导致明显的表型,可能是由于 Ezh1 的功能冗余。因此,早期由 Nk2-5(Cre) 引起的 Ezh2 失活导致后期破坏心肌细胞基因表达和心脏发育。
本研究揭示了 EZH2 在调节心脏形成中的先前未描述的作用,并表明心脏发生早期的表观遗传景观干扰在后期发育阶段具有持续的破坏效应。