Suppr超能文献

TCERG1 通过调节 RNA 聚合酶 II 转录的速率来调节 Bcl-x 基因的可变剪接。

TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription.

机构信息

Department of Molecular Biology, Instituto de Parasitología y Biomedicina López Neyra, IPBLN-CSIC, Granada, Spain.

出版信息

Mol Cell Biol. 2012 Feb;32(4):751-62. doi: 10.1128/MCB.06255-11. Epub 2011 Dec 12.

Abstract

Complex functional coupling exists between transcriptional elongation and pre-mRNA alternative splicing. Pausing sites and changes in the rate of transcription by RNA polymerase II (RNAPII) may therefore have fundamental impacts in the regulation of alternative splicing. Here, we show that the elongation and splicing-related factor TCERG1 regulates alternative splicing of the apoptosis gene Bcl-x in a promoter-dependent manner. TCERG1 promotes the splicing of the short isoform of Bcl-x (Bcl-x(s)) through the SB1 regulatory element located in the first half of exon 2. Consistent with these results, we show that TCERG1 associates with the Bcl-x pre-mRNA. A transcription profile analysis revealed that the RNA sequences required for the effect of TCERG1 on Bcl-x alternative splicing coincide with a putative polymerase pause site. Furthermore, TCERG1 modifies the impact of a slow polymerase on Bcl-x alternative splicing. In support of a role for an elongation mechanism in the transcriptional control of Bcl-x alternative splicing, we found that TCERG1 modifies the amount of pre-mRNAs generated at distal regions of the endogenous Bcl-x. Most importantly, TCERG1 affects the rate of RNAPII transcription of endogenous human Bcl-x. We propose that TCERG1 modulates the elongation rate of RNAPII to relieve pausing, thereby activating the proapoptotic Bcl-x(S) 5' splice site.

摘要

转录延伸和前体 mRNA 可变剪接之间存在复杂的功能偶联。因此,RNA 聚合酶 II(RNAPII)的暂停位点和转录速率的变化可能对可变剪接的调控具有根本影响。在这里,我们表明延伸和剪接相关因子 TCERG1 以依赖启动子的方式调节凋亡基因 Bcl-x 的可变剪接。TCERG1 通过位于外显子 2 前半部分的 SB1 调节元件促进 Bcl-x 短异构体(Bcl-x(s))的剪接。与这些结果一致,我们表明 TCERG1 与 Bcl-x 前体 mRNA 相关联。转录谱分析显示,TCERG1 对 Bcl-x 可变剪接的影响所需的 RNA 序列与假定的聚合酶暂停位点一致。此外,TCERG1 改变了聚合酶缓慢对 Bcl-x 可变剪接的影响。为了支持在转录控制 Bcl-x 可变剪接中延伸机制的作用,我们发现 TCERG1 改变了内源性 Bcl-x 远端区域产生的前体 mRNA 的数量。最重要的是,TCERG1 影响内源性人 Bcl-x 的 RNAPII 转录速率。我们提出 TCERG1 调节 RNAPII 的延伸速率以缓解暂停,从而激活促凋亡的 Bcl-x(S) 5' 剪接位点。

相似文献

1
TCERG1 regulates alternative splicing of the Bcl-x gene by modulating the rate of RNA polymerase II transcription.
Mol Cell Biol. 2012 Feb;32(4):751-62. doi: 10.1128/MCB.06255-11. Epub 2011 Dec 12.
2
Functional Consequences for Apoptosis by Transcription Elongation Regulator 1 (TCERG1)-Mediated Bcl-x and Fas/CD95 Alternative Splicing.
PLoS One. 2015 Oct 13;10(10):e0139812. doi: 10.1371/journal.pone.0139812. eCollection 2015.
4
Differential effects of sumoylation on transcription and alternative splicing by transcription elongation regulator 1 (TCERG1).
J Biol Chem. 2010 May 14;285(20):15220-15233. doi: 10.1074/jbc.M109.063750. Epub 2010 Mar 9.
5
Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing.
J Biol Chem. 2008 Mar 21;283(12):7949-61. doi: 10.1074/jbc.M709402200. Epub 2008 Jan 10.
6
The in vivo dynamics of TCERG1, a factor that couples transcriptional elongation with splicing.
RNA. 2016 Apr;22(4):571-82. doi: 10.1261/rna.052795.115. Epub 2016 Feb 12.
9
The FF4 and FF5 domains of transcription elongation regulator 1 (TCERG1) target proteins to the periphery of speckles.
J Biol Chem. 2012 May 18;287(21):17789-17800. doi: 10.1074/jbc.M111.304782. Epub 2012 Mar 27.
10
Identification of a novel cis-element that regulates alternative splicing of Bcl-x pre-mRNA.
Biochem Biophys Res Commun. 2012 Apr 6;420(2):467-72. doi: 10.1016/j.bbrc.2012.03.029. Epub 2012 Mar 13.

引用本文的文献

1
Spliceosome component TCERG1 regulates the aggressiveness of somatotroph adenoma.
J Endocrinol Invest. 2025 Feb;48(2):333-344. doi: 10.1007/s40618-024-02447-7. Epub 2024 Oct 3.
2
Cryo-EM analyses of dimerized spliceosomes provide new insights into the functions of B complex proteins.
EMBO J. 2024 Mar;43(6):1065-1088. doi: 10.1038/s44318-024-00052-1. Epub 2024 Feb 21.
4
Overexpression of as a prognostic marker in hepatocellular carcinoma: A TCGA data-based analysis.
Front Genet. 2022 Oct 10;13:959832. doi: 10.3389/fgene.2022.959832. eCollection 2022.
5
Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing.
Int J Mol Sci. 2021 Nov 18;22(22):12444. doi: 10.3390/ijms222212444.
6
Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation.
J Exp Clin Cancer Res. 2021 Jun 12;40(1):194. doi: 10.1186/s13046-021-02001-w.
7
MZ1 co-operates with trastuzumab in HER2 positive breast cancer.
J Exp Clin Cancer Res. 2021 Mar 19;40(1):106. doi: 10.1186/s13046-021-01907-9.
8
Splicing alterations in healthy aging and disease.
Wiley Interdiscip Rev RNA. 2021 Jul;12(4):e1643. doi: 10.1002/wrna.1643. Epub 2021 Feb 9.
9
Intellectual disability: dendritic anomalies and emerging genetic perspectives.
Acta Neuropathol. 2021 Feb;141(2):139-158. doi: 10.1007/s00401-020-02244-5. Epub 2020 Nov 23.
10
Innovative Therapeutic and Delivery Approaches Using Nanotechnology to Correct Splicing Defects Underlying Disease.
Front Genet. 2020 Jul 14;11:731. doi: 10.3389/fgene.2020.00731. eCollection 2020.

本文引用的文献

2
Paused RNA polymerase II as a developmental checkpoint.
Cell. 2011 May 13;145(4):502-11. doi: 10.1016/j.cell.2011.04.021.
3
Pause locally, splice globally.
Trends Cell Biol. 2011 Jun;21(6):328-35. doi: 10.1016/j.tcb.2011.03.002. Epub 2011 Apr 27.
4
A novel assay identifies transcript elongation roles for the Nup84 complex and RNA processing factors.
EMBO J. 2011 May 18;30(10):1953-64. doi: 10.1038/emboj.2011.109. Epub 2011 Apr 8.
5
Epigenetics in alternative pre-mRNA splicing.
Cell. 2011 Jan 7;144(1):16-26. doi: 10.1016/j.cell.2010.11.056.
6
Splicing-dependent RNA polymerase pausing in yeast.
Mol Cell. 2010 Nov 24;40(4):582-93. doi: 10.1016/j.molcel.2010.11.005.
7
Global analysis of nascent RNA reveals transcriptional pausing in terminal exons.
Mol Cell. 2010 Nov 24;40(4):571-81. doi: 10.1016/j.molcel.2010.11.004.
9
The DNA damage response pathway regulates the alternative splicing of the apoptotic mediator Bcl-x.
J Biol Chem. 2011 Jan 7;286(1):331-40. doi: 10.1074/jbc.M110.162644. Epub 2010 Oct 27.
10
The carboxy terminal domain of RNA polymerase II and alternative splicing.
Trends Biochem Sci. 2010 Sep;35(9):497-504. doi: 10.1016/j.tibs.2010.03.010. Epub 2010 Apr 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验