Suñé-Pou Marc, Limeres María J, Moreno-Castro Cristina, Hernández-Munain Cristina, Suñé-Negre Josep M, Cuestas María L, Suñé Carlos
Drug Development Service (SDM), Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
Institute of Research in Microbiology and Medical Parasitology (IMPaM), Faculty of Medicine, University of Buenos Aires-CONICET, Buenos Aires, Argentina.
Front Genet. 2020 Jul 14;11:731. doi: 10.3389/fgene.2020.00731. eCollection 2020.
Alternative splicing of pre-mRNA contributes strongly to the diversity of cell- and tissue-specific protein expression patterns. Global transcriptome analyses have suggested that >90% of human multiexon genes are alternatively spliced. Alterations in the splicing process cause missplicing events that lead to genetic diseases and pathologies, including various neurological disorders, cancers, and muscular dystrophies. In recent decades, research has helped to elucidate the mechanisms regulating alternative splicing and, in some cases, to reveal how dysregulation of these mechanisms leads to disease. The resulting knowledge has enabled the design of novel therapeutic strategies for correction of splicing-derived pathologies. In this review, we focus primarily on therapeutic approaches targeting splicing, and we highlight nanotechnology-based gene delivery applications that address the challenges and barriers facing nucleic acid-based therapeutics.
前体信使核糖核酸(pre-mRNA)的可变剪接对细胞和组织特异性蛋白质表达模式的多样性有很大贡献。全转录组分析表明,超过90%的人类多外显子基因会发生可变剪接。剪接过程中的改变会导致错误剪接事件,进而引发包括各种神经疾病、癌症和肌肉萎缩症在内的遗传疾病和病变。近几十年来,研究有助于阐明调节可变剪接的机制,并且在某些情况下揭示了这些机制的失调是如何导致疾病的。由此产生的知识使得设计纠正剪接衍生病变的新型治疗策略成为可能。在这篇综述中,我们主要关注针对剪接的治疗方法,并重点介绍基于纳米技术的基因递送应用,这些应用解决了基于核酸的治疗方法所面临的挑战和障碍。