Zhou Zhongneng, Chen Zijing, Kang Xiu-Wen, Ding Bei, Zou Shuhua, Tang Siwei, Zhou Yalin, Wang Bingyao, Zhong Dongping
Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2416284121. doi: 10.1073/pnas.2416284121. Epub 2024 Dec 31.
Class II photolyases (PLs) are a distant subclade in the photolyase/cryptochrome superfamily, displaying a unique Trp-Tyr tetrad for photoreduction and exhibiting a lower quantum yield (QY) of DNA repair (49%) than class I photolyases (82%) [M. Zhang, L. Wang, S. Shu, A. Sancar, D. Zhong, , 209-213 (2016)]. Using layer-by-layer mutant design and femtosecond spectroscopy, we have successfully determined the rates of electron transfer and proton transfer, driving force, and reorganization energy for nine elementary steps involved in the initial photoreduction of class II photolyase (AtPL), thereby constructing the photoreduction network specific to class II PLs. Several dynamic features have been revealed including a slow-rise (172 ps) and fast-decay (26 ps) kinetics between the excited lumiflavin and adenine groups within the flavin adenine dinucleotide cofactor, a slower electron transfer (ET) (22 ps) between the excited lumiflavin and the nearest Trp in the Trp triad (W) as compared to reported class I PL (0.8 ps), and a rapid deprotonation of the distal Trp in the Trp triad (W). Most strikingly, we captured a slightly energetically unfavorable ET step between W and the center Trp (W), as opposed to the decreasing reduction potential observed in class I PL that drives the electron flow unidirectionally. Such an energetically uphill ET step leads to a lower photoreduction quantum yield (34%) in class II AtPL compared to that of class I PL (45%), raising an important question on the evolutionary implications of various photoreduction networks in photolyases and cryptochromes.
II类光解酶(PLs)是光解酶/隐花色素超家族中一个较远的亚分支,具有用于光还原的独特色氨酸-酪氨酸四联体,并且与I类光解酶(82%)相比,其DNA修复的量子产率(QY)较低(49%)[张M、王L、舒S、桑卡尔A、钟D, ,209 - 213(2016)]。通过逐层突变设计和飞秒光谱,我们成功测定了II类光解酶(AtPL)初始光还原过程中涉及的九个基本步骤的电子转移和质子转移速率、驱动力以及重组能,从而构建了II类PLs特有的光还原网络。揭示了几个动力学特征,包括黄素腺嘌呤二核苷酸辅因子内激发态的黄素单核苷酸与腺嘌呤基团之间的缓慢上升(172皮秒)和快速衰减(26皮秒)动力学、与报道的I类PL(0.8皮秒)相比,激发态的黄素单核苷酸与色氨酸三联体(W)中最邻近的色氨酸之间较慢的电子转移(ET)(22皮秒)以及色氨酸三联体(W)中远端色氨酸的快速去质子化。最引人注目的是,我们捕捉到了W与中心色氨酸(W)之间一个能量上略不利的ET步骤,这与I类PL中观察到的驱动电子单向流动的还原电位降低相反。与I类PL(45%)相比,这种能量上向上的ET步骤导致II类AtPL的光还原量子产率较低(34%),这就提出了一个关于光解酶和隐花色素中各种光还原网络的进化意义的重要问题。