Suppr超能文献

利用图像细胞计量术自动识别循环肿瘤细胞。

Automated identification of circulating tumor cells by image cytometry.

机构信息

Faculty of Science and Technology, Department of Medical Cell BioPhysics, MIRA Research Institute, University of Twente, Enschede, The Netherlands.

出版信息

Cytometry A. 2012 Feb;81(2):138-48. doi: 10.1002/cyto.a.22002. Epub 2011 Dec 13.

Abstract

Presence of circulating tumor cells (CTC), as detected by the CellSearch System, in patients with metastatic carcinomas is associated with poor survival prospects. CellTracks TDI, a dedicated image cytometer, was developed to improve the enumeration of these rare CTC. The CellSearch System was used to enumerate CTC in 7.5 mL blood of 68 patients with cancer and 9 healthy controls. Cartridges containing the fluorescently labeled CTC from this system were reanalyzed using the image cytometer, which acquires images with a TDI camera using a 40×/0.6 NA objective and lasers as light source. Automated classification of events was performed by the Random Forest method using Matlab. An automated classifier was developed to classify events into CTC, apoptotic CTC, CTC debris, leukocytes, and debris not related to CTC. A high agreement in classification was obtained between the automated classifier and five expert reviewers. Comparison of images from the same events in CellTracks TDI and CellTracks Analyzer II shows improved resolution in fluorescence images and improved classification by adding bright-field images. Improved detection efficiency for CD45-APC avoids the classification of leukocytes nonspecifically binding to cytokeratin as CTC. The correlation between number of CTC detected in CellTracks TDI and CellTracks Analyzer II is good with a slope of 1.88 and a correlation coefficient of 0.87. Automated classification of events by CellTracks TDI eliminates the operator error in classification of events as CTC and permits quantitative assessment of parameters. The clinical relevance of various CTC definitions can now be investigated.

摘要

循环肿瘤细胞(CTC)的存在,通过 CellSearch 系统检测,与转移性癌患者的不良生存前景相关。CellTracks TDI 是一种专用的图像细胞仪,旨在提高这些稀有 CTC 的计数。使用 CellSearch 系统对 68 例癌症患者和 9 例健康对照者的 7.5ml 血液中的 CTC 进行计数。该系统的含荧光标记 CTC 的试剂盒通过图像细胞仪进行再分析,该细胞仪使用 TDI 相机获取图像,使用 40×/0.6 NA 物镜和激光作为光源。使用 Matlab 的随机森林方法对事件进行自动分类。开发了一种自动分类器,将事件分类为 CTC、凋亡 CTC、CTC 碎片、白细胞和与 CTC 无关的碎片。自动分类器与五名专家评审员之间的分类高度一致。比较 CellTracks TDI 和 CellTracks Analyzer II 中来自相同事件的图像显示,荧光图像的分辨率提高,添加明场图像可提高分类效果。CD45-APC 的检测效率提高,避免了白细胞非特异性结合细胞角蛋白的分类为 CTC。在 CellTracks TDI 和 CellTracks Analyzer II 中检测到的 CTC 数量之间的相关性良好,斜率为 1.88,相关系数为 0.87。CellTracks TDI 的事件自动分类消除了事件分类为 CTC 的操作人员误差,并允许对参数进行定量评估。现在可以研究各种 CTC 定义的临床相关性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验