Futia Gregory L, Schlaepfer Isabel R, Qamar Lubna, Behbakht Kian, Gibson Emily A
Department of Bioengineering, University of Colorado Denver | Anschutz Medical Campus, 12700 E. 19th Ave, Aurora, Colorado, 80045.
Division of Medical Oncology, University of Colorado | Anschutz Medical Campus, 12801 E. 17th Ave, Aurora, Colorado, 80045.
Cytometry A. 2017 Jul;91(7):662-674. doi: 10.1002/cyto.a.23144. Epub 2017 Jun 13.
Detection of circulating tumor cells (CTCs) in a blood sample is limited by the sensitivity and specificity of the biomarker panel used to identify CTCs over other blood cells. In this work, we present Bayesian theory that shows how test sensitivity and specificity set the rarity of cell that a test can detect. We perform our calculation of sensitivity and specificity on our image cytometry biomarker panel by testing on pure disease positive (D ) populations (MCF7 cells) and pure disease negative populations (D ) (leukocytes). In this system, we performed multi-channel confocal fluorescence microscopy to image biomarkers of DNA, lipids, CD45, and Cytokeratin. Using custom software, we segmented our confocal images into regions of interest consisting of individual cells and computed the image metrics of total signal, second spatial moment, spatial frequency second moment, and the product of the spatial-spatial frequency moments. We present our analysis of these 16 features. The best performing of the 16 features produced an average separation of three standard deviations between D and D and an average detectable rarity of ∼1 in 200. We performed multivariable regression and feature selection to combine multiple features for increased performance and showed an average separation of seven standard deviations between the D and D populations making our average detectable rarity of ∼1 in 480. Histograms and receiver operating characteristics (ROC) curves for these features and regressions are presented. We conclude that simple regression analysis holds promise to further improve the separation of rare cells in cytometry applications. © 2017 International Society for Advancement of Cytometry.
血液样本中循环肿瘤细胞(CTC)的检测受到用于识别CTC而非其他血细胞的生物标志物组的敏感性和特异性的限制。在这项工作中,我们提出了贝叶斯理论,该理论展示了检测敏感性和特异性如何决定检测所能发现的细胞的稀有程度。我们通过对纯疾病阳性(D)群体(MCF7细胞)和纯疾病阴性群体(D)(白细胞)进行测试,来计算我们图像细胞术生物标志物组的敏感性和特异性。在这个系统中,我们进行了多通道共聚焦荧光显微镜检查,以对DNA、脂质、CD45和细胞角蛋白的生物标志物进行成像。使用定制软件,我们将共聚焦图像分割成由单个细胞组成的感兴趣区域,并计算了总信号、二阶空间矩、空间频率二阶矩以及空间 - 空间频率矩的乘积等图像指标。我们展示了对这16个特征的分析。这16个特征中表现最佳的特征在D和D之间产生了平均三个标准差的分离,平均可检测稀有度约为1/200。我们进行了多变量回归和特征选择,以组合多个特征来提高性能,结果显示D和D群体之间平均有七个标准差的分离,使我们的平均可检测稀有度约为1/480。还给出了这些特征和回归的直方图以及受试者工作特征(ROC)曲线。我们得出结论,简单的回归分析有望在细胞术应用中进一步改善稀有细胞的分离。© 2017国际细胞计量学促进协会