Suppr超能文献

利用图形处理单元开发基于多尺度、多分辨率智能体的脑肿瘤模型。

Developing a multiscale, multi-resolution agent-based brain tumor model by graphics processing units.

作者信息

Zhang Le, Jiang Beini, Wu Yukun, Strouthos Costas, Sun Phillip Zhe, Su Jing, Zhou Xiaobo

机构信息

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931, USA.

出版信息

Theor Biol Med Model. 2011 Dec 16;8:46. doi: 10.1186/1742-4682-8-46.

Abstract

Multiscale agent-based modeling (MABM) has been widely used to simulate Glioblastoma Multiforme (GBM) and its progression. At the intracellular level, the MABM approach employs a system of ordinary differential equations to describe quantitatively specific intracellular molecular pathways that determine phenotypic switches among cells (e.g. from migration to proliferation and vice versa). At the intercellular level, MABM describes cell-cell interactions by a discrete module. At the tissue level, partial differential equations are employed to model the diffusion of chemoattractants, which are the input factors of the intracellular molecular pathway. Moreover, multiscale analysis makes it possible to explore the molecules that play important roles in determining the cellular phenotypic switches that in turn drive the whole GBM expansion. However, owing to limited computational resources, MABM is currently a theoretical biological model that uses relatively coarse grids to simulate a few cancer cells in a small slice of brain cancer tissue. In order to improve this theoretical model to simulate and predict actual GBM cancer progression in real time, a graphics processing unit (GPU)-based parallel computing algorithm was developed and combined with the multi-resolution design to speed up the MABM. The simulated results demonstrated that the GPU-based, multi-resolution and multiscale approach can accelerate the previous MABM around 30-fold with relatively fine grids in a large extracellular matrix. Therefore, the new model has great potential for simulating and predicting real-time GBM progression, if real experimental data are incorporated.

摘要

基于多尺度智能体的建模(MABM)已被广泛用于模拟多形性胶质母细胞瘤(GBM)及其进展。在细胞内水平,MABM方法采用常微分方程组来定量描述特定的细胞内分子途径,这些途径决定细胞间的表型转换(例如从迁移到增殖,反之亦然)。在细胞间水平,MABM通过一个离散模块描述细胞间相互作用。在组织水平,偏微分方程用于模拟化学引诱剂的扩散,化学引诱剂是细胞内分子途径的输入因子。此外,多尺度分析使得探索在决定细胞表型转换中起重要作用的分子成为可能,而这些表型转换反过来驱动整个GBM的扩展。然而,由于计算资源有限,MABM目前是一种理论生物学模型,它使用相对粗糙的网格来模拟一小片脑癌组织中的少数癌细胞。为了改进这一点以实时模拟和预测实际的GBM癌症进展,开发了一种基于图形处理单元(GPU)的并行计算算法,并将其与多分辨率设计相结合以加速MABM。模拟结果表明,基于GPU的多分辨率多尺度方法在大细胞外基质中使用相对精细的网格时,可将先前的MABM加速约30倍。因此,如果纳入实际实验数据,新模型在模拟和预测GBM实时进展方面具有巨大潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea18/3312859/4fd6011886b5/1742-4682-8-46-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验