Div. of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, Univ. of North Carolina, Chapel Hill, NC 27599, USA.
Am J Physiol Endocrinol Metab. 2012 Mar 1;302(5):E500-9. doi: 10.1152/ajpendo.00370.2011. Epub 2011 Dec 20.
Metabolism of arachidonic acid by cytochrome P450 (CYP) to biologically active eicosanoids has been recognized increasingly as an integral mediator in the pathogenesis of cardiovascular and metabolic disease. CYP epoxygenase-derived epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EET + DHET) and CYP ω-hydroxylase-derived 20-hydroxyeicosatetraenoic acid (20-HETE) exhibit divergent effects in the regulation of vascular tone and inflammation; thus, alterations in the functional balance between these parallel pathways in liver and kidney may contribute to the pathogenesis and progression of metabolic syndrome. However, the impact of metabolic dysfunction on CYP-mediated formation of endogenous eicosanoids has not been well characterized. Therefore, we evaluated CYP epoxygenase (EET + DHET) and ω-hydroxylase (20-HETE) metabolic activity in liver and kidney in apoE(-/-) and wild-type mice fed a high-fat diet, which promoted weight gain and increased plasma insulin levels significantly. Hepatic CYP epoxygenase metabolic activity was significantly suppressed, whereas renal CYP ω-hydroxylase metabolic activity was induced significantly in high-fat diet-fed mice regardless of genotype, resulting in a significantly higher 20-HETE/EET + DHET formation rate ratio in both tissues. Treatment with enalapril, but not metformin or losartan, reversed the suppression of hepatic CYP epoxygenase metabolic activity and induction of renal CYP ω-hydroxylase metabolic activity, thereby restoring the functional balance between the pathways. Collectively, these findings suggest that the kinin-kallikrein system and angiotensin II type 2 receptor are key regulators of hepatic and renal CYP-mediated eicosanoid metabolism in the presence of metabolic syndrome. Future studies delineating the underlying mechanisms and evaluating the therapeutic potential of modulating CYP-derived EETs and 20-HETE in metabolic diseases are warranted.
花生四烯酸通过细胞色素 P450(CYP)代谢为生物活性的二十碳烯酸,越来越被认为是心血管和代谢疾病发病机制中的一个重要介质。CYP 环氧合酶衍生的环氧二十碳三烯酸和二羟二十碳三烯酸(EET + DHET)和 CYP ω-羟化酶衍生的 20-羟二十碳四烯酸(20-HETE)在调节血管张力和炎症方面表现出不同的作用;因此,肝和肾中这些平行途径之间的功能平衡的改变可能导致代谢综合征的发病和进展。然而,代谢功能障碍对 CYP 介导的内源性二十碳烯酸形成的影响尚未得到很好的描述。因此,我们评估了高脂饮食喂养的 apoE(-/-)和野生型小鼠肝和肾中 CYP 环氧合酶(EET + DHET)和 ω-羟化酶(20-HETE)代谢活性,高脂饮食促进体重增加和显著增加血浆胰岛素水平。无论基因型如何,高脂饮食喂养的小鼠肝 CYP 环氧合酶代谢活性显著受到抑制,而肾 CYP ω-羟化酶代谢活性显著增强,导致两种组织中的 20-HETE/EET + DHET 形成率比值显著升高。依那普利治疗,但不是二甲双胍或氯沙坦治疗,逆转了肝 CYP 环氧合酶代谢活性的抑制和肾 CYP ω-羟化酶代谢活性的诱导,从而恢复了两条途径之间的功能平衡。总之,这些发现表明激肽-激肽释放酶系统和血管紧张素 II 型 2 受体是代谢综合征存在时肝和肾 CYP 介导的二十碳烯酸代谢的关键调节剂。未来的研究需要阐明潜在的机制,并评估调节 CYP 衍生的 EETs 和 20-HETE 在代谢性疾病中的治疗潜力。