Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA.
Nat Biotechnol. 2011 Dec 25;30(1):90-8. doi: 10.1038/nbt.2057.
We describe tethered conformation capture (TCC), a method for genome-wide mapping of chromatin interactions. By performing ligations on solid substrates rather than in solution, TCC substantially enhances the signal-to-noise ratio, thereby facilitating a detailed analysis of interactions within and between chromosomes. We identified a group of regions in each chromosome in human cells that account for the majority of interchromosomal interactions. These regions are marked by high transcriptional activity, suggesting that their interactions are mediated by transcriptional machinery. Each of these regions interacts with numerous other such regions throughout the genome in an indiscriminate fashion, partly driven by the accessibility of the partners. As a different combination of interactions is likely present in different cells, we developed a computational method to translate the TCC data into physical chromatin contacts in a population of three-dimensional genome structures. Statistical analysis of the resulting population demonstrates that the indiscriminate properties of interchromosomal interactions are consistent with the well-known architectural features of the human genome.
我们描述了一种用于全基因组染色质相互作用作图的方法——连接捕获构象(Tethered Conformation Capture,TCC)。通过在固体基质上而不是在溶液中进行连接,TCC 大大提高了信号与噪声的比率,从而可以更详细地分析染色体内部和之间的相互作用。我们在人类细胞的每条染色体上都鉴定出了一组区域,这些区域占据了大多数染色体间相互作用的份额。这些区域的转录活性很高,这表明它们的相互作用是由转录机制介导的。这些区域中的每一个都与基因组中其他许多这样的区域以不分主次的方式相互作用,这种相互作用部分是由伴侣的可及性驱动的。由于不同细胞中可能存在不同的相互作用组合,我们开发了一种计算方法,可将 TCC 数据转化为三维基因组结构群体中的实际染色质接触。对由此产生的群体进行的统计分析表明,染色体间相互作用的不分主次特性与人类基因组众所周知的结构特征是一致的。