Suppr超能文献

基于机器学习的三维几何重建及利用三维计算机断层扫描图像对主动脉瓣变形进行建模

Machine learning-based 3-D geometry reconstruction and modeling of aortic valve deformation using 3-D computed tomography images.

作者信息

Liang Liang, Kong Fanwei, Martin Caitlin, Pham Thuy, Wang Qian, Duncan James, Sun Wei

机构信息

Tissue Mechanics Laboratory The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA.

Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA.

出版信息

Int J Numer Method Biomed Eng. 2017 May;33(5). doi: 10.1002/cnm.2827. Epub 2016 Oct 7.

Abstract

To conduct a patient-specific computational modeling of the aortic valve, 3-D aortic valve anatomic geometries of an individual patient need to be reconstructed from clinical 3-D cardiac images. Currently, most of computational studies involve manual heart valve geometry reconstruction and manual finite element (FE) model generation, which is both time-consuming and prone to human errors. A seamless computational modeling framework, which can automate this process based on machine learning algorithms, is desirable, as it can not only eliminate human errors and ensure the consistency of the modeling results but also allow fast feedback to clinicians and permits a future population-based probabilistic analysis of large patient cohorts. In this study, we developed a novel computational modeling method to automatically reconstruct the 3-D geometries of the aortic valve from computed tomographic images. The reconstructed valve geometries have built-in mesh correspondence, which bridges harmonically for the consequent FE modeling. The proposed method was evaluated by comparing the reconstructed geometries from 10 patients with those manually created by human experts, and a mean discrepancy of 0.69 mm was obtained. Based on these reconstructed geometries, FE models of valve leaflets were developed, and aortic valve closure from end systole to middiastole was simulated for 7 patients and validated by comparing the deformed geometries with those manually created by human experts, and a mean discrepancy of 1.57 mm was obtained. The proposed method offers great potential to streamline the computational modeling process and enables the development of a preoperative planning system for aortic valve disease diagnosis and treatment.

摘要

为了对个体患者的主动脉瓣进行特定患者的计算建模,需要从临床三维心脏图像中重建个体患者的三维主动脉瓣解剖几何结构。目前,大多数计算研究涉及手动心脏瓣膜几何结构重建和手动有限元(FE)模型生成,这既耗时又容易出现人为错误。一个基于机器学习算法能够自动执行此过程的无缝计算建模框架是很有必要的,因为它不仅可以消除人为错误并确保建模结果的一致性,还能为临床医生提供快速反馈,并允许对大量患者队列进行基于未来人群的概率分析。在本研究中,我们开发了一种新颖的计算建模方法,用于从计算机断层扫描图像中自动重建主动脉瓣的三维几何结构。重建的瓣膜几何结构具有内置的网格对应关系,可在后续的有限元建模中进行和谐衔接。通过将10名患者重建的几何结构与人类专家手动创建的几何结构进行比较,对所提出的方法进行了评估,得到的平均差异为0.69毫米。基于这些重建的几何结构,开发了瓣膜小叶的有限元模型,并对7名患者从收缩期末期到舒张中期的主动脉瓣关闭进行了模拟,并通过将变形后的几何结构与人类专家手动创建的几何结构进行比较来进行验证,得到的平均差异为1.57毫米。所提出的方法具有简化计算建模过程的巨大潜力,并能够开发用于主动脉瓣疾病诊断和治疗的术前规划系统。

相似文献

引用本文的文献

本文引用的文献

5
Deep learning in neural networks: an overview.神经网络中的深度学习:综述。
Neural Netw. 2015 Jan;61:85-117. doi: 10.1016/j.neunet.2014.09.003. Epub 2014 Oct 13.
7
Computational modeling of cardiac valve function and intervention.心脏瓣膜功能与干预的计算建模
Annu Rev Biomed Eng. 2014 Jul 11;16:53-76. doi: 10.1146/annurev-bioeng-071813-104517. Epub 2014 Apr 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验