Suppr超能文献

使用瑞利分类器进行一致的分割。

Consistent segmentation using a Rician classifier.

机构信息

Image Analysis and Communications Laboratory, Dept. of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.

出版信息

Med Image Anal. 2012 Feb;16(2):524-35. doi: 10.1016/j.media.2011.12.001. Epub 2011 Dec 13.

Abstract

Several popular classification algorithms used to segment magnetic resonance brain images assume that the image intensities, or log-transformed intensities, satisfy a finite Gaussian mixture model. In these methods, the parameters of the mixture model are estimated and the posterior probabilities for each tissue class are used directly as soft segmentations or combined to form a hard segmentation. It is suggested and shown in this paper that a Rician mixture model fits the observed data better than a Gaussian model. Accordingly, a Rician mixture model is formulated and used within an expectation maximization (EM) framework to yield a new tissue classification algorithm called Rician Classifier using EM (RiCE). It is shown using both simulated and real data that RiCE yields comparable or better performance to that of algorithms based on the finite Gaussian mixture model. As well, we show that RiCE yields more consistent segmentation results when used on images of the same individual acquired with different T1-weighted pulse sequences. Therefore, RiCE has the potential to stabilize segmentation results in brain studies involving heterogeneous acquisition sources as is typically found in both multi-center and longitudinal studies.

摘要

几种常用的磁共振脑图像分割分类算法假设图像强度或对数变换后的强度满足有限的高斯混合模型。在这些方法中,混合模型的参数被估计,组织类别的后验概率被直接用作软分割,或组合形成硬分割。本文提出并证明了瑞利混合模型比高斯模型更适合观测数据。因此,提出了一种瑞利混合模型,并在期望最大化 (EM) 框架内使用它来产生一种新的组织分类算法,称为使用 EM 的瑞利分类器 (RiCE)。使用模拟和真实数据表明,RiCE 的性能与基于有限高斯混合模型的算法相当或更好。此外,我们还表明,当对使用不同 T1 加权脉冲序列获得的同一个体的图像进行使用时,RiCE 会产生更一致的分割结果。因此,RiCE 有可能稳定涉及不同采集源的脑研究中的分割结果,这在多中心和纵向研究中通常都可以找到。

相似文献

1
Consistent segmentation using a Rician classifier.使用瑞利分类器进行一致的分割。
Med Image Anal. 2012 Feb;16(2):524-35. doi: 10.1016/j.media.2011.12.001. Epub 2011 Dec 13.
7
Towards whole brain segmentation by a hybrid model.基于混合模型的全脑分割研究
Med Image Comput Comput Assist Interv. 2007;10(Pt 2):169-77. doi: 10.1007/978-3-540-75759-7_21.

引用本文的文献

4
Random forest regression for magnetic resonance image synthesis.用于磁共振图像合成的随机森林回归
Med Image Anal. 2017 Jan;35:475-488. doi: 10.1016/j.media.2016.08.009. Epub 2016 Aug 31.
6
MR image synthesis by contrast learning on neighborhood ensembles.基于邻域集成对比学习的磁共振图像合成
Med Image Anal. 2015 Aug;24(1):63-76. doi: 10.1016/j.media.2015.05.002. Epub 2015 May 18.
7
Magnetic Resonance Image Example-Based Contrast Synthesis.基于磁共振图像示例的对比度合成。
IEEE Trans Med Imaging. 2013 Dec;32(12):2348-63. doi: 10.1109/TMI.2013.2282126. Epub 2013 Sep 16.

本文引用的文献

1
A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms.模糊 ISODATA 聚类算法的一个收敛定理。
IEEE Trans Pattern Anal Mach Intell. 1980 Jan;2(1):1-8. doi: 10.1109/tpami.1980.4766964.
2
Simple paradigm for extra-cerebral tissue removal: algorithm and analysis.用于去除脑外组织的简单范例:算法与分析。
Neuroimage. 2011 Jun 15;56(4):1982-92. doi: 10.1016/j.neuroimage.2011.03.045. Epub 2011 Mar 31.
4
FUZZY C-MEANS WITH VARIABLE COMPACTNESS.具有可变紧致性的模糊C均值算法
Proc IEEE Int Symp Biomed Imaging. 2008;4541030:452. doi: 10.1109/ISBI.2008.4541030.
8
Information measures-based intensity standardization of MRI.基于信息测度的磁共振成像强度标准化
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2233-6. doi: 10.1109/IEMBS.2008.4649640.
9
Model-based super-resolution for MRI.基于模型的磁共振成像超分辨率技术
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:430-4. doi: 10.1109/IEMBS.2008.4649182.
10
Bayesian analysis of neuroimaging data in FSL.基于FSL的神经影像数据的贝叶斯分析。
Neuroimage. 2009 Mar;45(1 Suppl):S173-86. doi: 10.1016/j.neuroimage.2008.10.055. Epub 2008 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验