Biological Imaging Centre (BIC), Medical Research Council (MRC) Clinical Sciences Centre, Imperial College London, Hammersmith Campus, London W12 0NN, UK.
EJNMMI Res. 2011 Jul 29;1(1):11. doi: 10.1186/2191-219X-1-11.
Preclinical models for musculoskeletal disorders are critical for understanding the pathogenesis of bone and joint disorders in humans and the development of effective therapies. The assessment of these models primarily relies on morphological analysis which remains time consuming and costly, requiring large numbers of animals to be tested through different stages of the disease. The implementation of preclinical imaging represents a keystone in the refinement of animal models allowing longitudinal studies and enabling a powerful, non-invasive and clinically translatable way for monitoring disease progression in real time. Our aim is to highlight examples that demonstrate the advantages and limitations of different imaging modalities including magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT) and optical imaging. All of which are in current use in preclinical skeletal research. MRI can provide high resolution of soft tissue structures, but imaging requires comparatively long acquisition times; hence, animals require long-term anaesthesia. CT is extensively used in bone and joint disorders providing excellent spatial resolution and good contrast for bone imaging. Despite its excellent structural assessment of mineralized structures, CT does not provide in vivo functional information of ongoing biological processes. Nuclear medicine is a very promising tool for investigating functional and molecular processes in vivo with new tracers becoming available as biomarkers. The combined use of imaging modalities also holds significant potential for the assessment of disease pathogenesis in animal models of musculoskeletal disorders, minimising the use of conventional invasive methods and animal redundancy.
肌肉骨骼疾病的临床前模型对于理解人类骨骼和关节疾病的发病机制以及开发有效的治疗方法至关重要。这些模型的评估主要依赖于形态分析,这种方法既耗时又昂贵,需要大量的动物在疾病的不同阶段进行测试。临床前成像的实施是动物模型改良的关键,它允许进行纵向研究,并为实时监测疾病进展提供了一种强大、非侵入性且可临床转化的方法。我们的目的是强调不同成像方式的优势和局限性的例子,包括磁共振成像(MRI)、计算机断层扫描(CT)、正电子发射断层扫描(PET)、单光子发射计算机断层扫描(SPECT)和光学成像。所有这些都在骨骼临床前研究中得到了广泛应用。MRI 可以提供软组织结构的高分辨率,但成像需要相对较长的采集时间;因此,动物需要长期麻醉。CT 在骨骼和关节疾病中广泛应用,为骨骼成像提供了极好的空间分辨率和良好的对比度。尽管 CT 对矿化结构的结构评估非常出色,但它不能提供正在进行的生物学过程的体内功能信息。核医学是一种非常有前途的工具,可用于研究体内的功能和分子过程,新的示踪剂作为生物标志物不断出现。成像方式的联合使用也为肌肉骨骼疾病动物模型的疾病发病机制评估提供了巨大潜力,可以减少对传统侵入性方法和动物冗余性的使用。