Centre for Quantum Computation and Communication Technology, School of Physics, University of New South Wales, Sydney, NSW 2052, Australia.
Science. 2012 Jan 6;335(6064):64-7. doi: 10.1126/science.1214319.
As silicon electronics approaches the atomic scale, interconnects and circuitry become comparable in size to the active device components. Maintaining low electrical resistivity at this scale is challenging because of the presence of confining surfaces and interfaces. We report on the fabrication of wires in silicon--only one atom tall and four atoms wide--with exceptionally low resistivity (~0.3 milliohm-centimeters) and the current-carrying capabilities of copper. By embedding phosphorus atoms within a silicon crystal with an average spacing of less than 1 nanometer, we achieved a diameter-independent resistivity, which demonstrates ohmic scaling to the atomic limit. Atomistic tight-binding calculations confirm the metallicity of these atomic-scale wires, which pave the way for single-atom device architectures for both classical and quantum information processing.
随着硅电子学接近原子尺度,互连和电路的尺寸与有源器件组件相当。由于存在约束表面和界面,在这个尺度上保持低电阻率具有挑战性。我们报告了在硅中制造只有一个原子高和四个原子宽的线,其电阻率非常低(约 0.3 毫欧姆厘米),并且具有铜的载流能力。通过在平均间距小于 1 纳米的硅晶体中嵌入磷原子,我们实现了与直径无关的电阻率,这证明了向原子极限的欧姆缩放。原子键合的计算证实了这些原子尺度线的金属性,为经典和量子信息处理的单原子器件架构铺平了道路。