Wang Xiqiao, Wyrick Jonathan, Kashid Ranjit V, Namboodiri Pradeep, Schmucker Scott W, Murphy Andrew, Stewart M D, Silver Richard M
National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, Maryland 20899, USA.
Chemical Physics Program, University of Maryland, College Park, Maryland 20742, USA.
Commun Phys. 2020;3(1). doi: 10.1038/s42005-020-0343-1.
Atomically precise donor-based quantum devices are a promising candidate for solid-state quantum computing and analog quantum simulations. However, critical challenges in atomically precise fabrication have meant systematic, atomic scale control of the tunneling rates and tunnel coupling has not been demonstrated. Here using a room-temperature grown locking layer and precise control over the entire fabrication process, we reduce unintentional dopant movement while achieving high quality epitaxy in scanning tunnelling microscope (STM)-patterned devices. Using the Si(100)2×1 surface reconstruction as an atomically-precise ruler to characterize the tunnel gap in precision-patterned single electron transistors, we demonstrate the exponential scaling of the tunneling resistance on the tunnel gap as it is varied from 7 dimer rows to 16 dimer rows. We demonstrate the capability to reproducibly pattern devices with atomic precision and a donor-based fabrication process where atomic scale changes in the patterned tunnel gap result in the expected changes in the tunneling rates.
基于原子精确施主的量子器件是固态量子计算和模拟量子模拟的一个有前途的候选者。然而,原子精确制造中的关键挑战意味着尚未证明对隧穿速率和隧道耦合进行系统的原子尺度控制。在这里,我们使用室温生长的锁定层并对整个制造过程进行精确控制,在扫描隧道显微镜(STM)图案化的器件中减少了无意掺杂剂的移动,同时实现了高质量外延。使用Si(100)2×1表面重构作为原子精确的标尺来表征精确图案化的单电子晶体管中的隧道间隙,我们证明了随着隧道间隙从7个二聚体行变化到16个二聚体行,隧穿电阻随隧道间隙呈指数缩放。我们展示了以原子精度可重复图案化器件的能力,以及一种基于施主的制造工艺,其中图案化隧道间隙中的原子尺度变化会导致隧穿速率发生预期变化。