Suppr超能文献

通过双探针扫描隧道光谱法测量平面原子尺度结构中的电子输运。

Electronic transport in planar atomic-scale structures measured by two-probe scanning tunneling spectroscopy.

作者信息

Kolmer Marek, Brandimarte Pedro, Lis Jakub, Zuzak Rafal, Godlewski Szymon, Kawai Hiroyo, Garcia-Lekue Aran, Lorente Nicolas, Frederiksen Thomas, Joachim Christian, Sanchez-Portal Daniel, Szymonski Marek

机构信息

Centre for Nanometer-Scale Science and Advanced Materials, NANOSAM, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Łojasiewicza 11, PL 30-348, Kraków, Poland.

Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37831, USA.

出版信息

Nat Commun. 2019 Apr 5;10(1):1573. doi: 10.1038/s41467-019-09315-6.

Abstract

Miniaturization of electronic circuits into the single-atom level requires novel approaches to characterize transport properties. Due to its unrivaled precision, scanning probe microscopy is regarded as the method of choice for local characterization of atoms and single molecules supported on surfaces. Here we investigate electronic transport along the anisotropic germanium (001) surface with the use of two-probe scanning tunneling spectroscopy and first-principles transport calculations. We introduce a method for the determination of the transconductance in our two-probe experimental setup and demonstrate how it captures energy-resolved information about electronic transport through the unoccupied surface states. The sequential opening of two transport channels within the quasi-one-dimensional Ge dimer rows in the surface gives rise to two distinct resonances in the transconductance spectroscopic signal, consistent with phase-coherence lengths of up to 50 nm and anisotropic electron propagation. Our work paves the way for the electronic transport characterization of quantum circuits engineered on surfaces.

摘要

将电子电路微型化至单原子水平需要采用新颖的方法来表征输运特性。由于其无与伦比的精度,扫描探针显微镜被视为用于局部表征支撑在表面上的原子和单分子的首选方法。在此,我们利用双探针扫描隧道谱和第一性原理输运计算来研究沿各向异性锗(001)表面的电子输运。我们介绍了一种在双探针实验装置中确定跨导的方法,并展示了它如何获取有关通过未占据表面态的电子输运的能量分辨信息。表面准一维锗二聚体行内两个输运通道的相继开启在跨导电谱信号中产生两个不同的共振,这与高达50 nm的相位相干长度和各向异性电子传播相一致。我们的工作为在表面上设计的量子电路的电子输运表征铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e35/6450957/0f106e9dd2fa/41467_2019_9315_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验