Ben-Hamo Rotem, Efroni Sol
Bar Ilan University, Ramat-Gan, Israel.
BMC Syst Biol. 2012 Jan 11;6:3. doi: 10.1186/1752-0509-6-3.
Ovarian cancer causes more deaths than any other gynecological cancer. Identifying the molecular mechanisms that drive disease progress in ovarian cancer is a critical step in providing therapeutics, improving diagnostics, and affiliating clinical behavior with disease etiology. Identification of molecular interactions that stratify prognosis is key in facilitating a clinical-molecular perspective.
The Cancer Genome Atlas has recently made available the molecular characteristics of more than 500 patients. We used the TCGA multi-analysis study, and two additional datasets and a set of computational algorithms that we developed. The computational algorithms are based on methods that identify network alterations and quantify network behavior through gene expression.We identify a network biomarker that significantly stratifies survival rates in ovarian cancer patients. Interestingly, expression levels of single or sets of genes do not explain the prognostic stratification. The discovered biomarker is composed of the network around the PDGF pathway. The biomarker enables prognosis stratification.
The work presented here demonstrates, through the power of gene-expression networks, the criticality of the PDGF network in driving disease course. In uncovering the specific interactions within the network, that drive the phenotype, we catalyze targeted treatment, facilitate prognosis and offer a novel perspective into hidden disease heterogeneity.
卵巢癌导致的死亡人数超过任何其他妇科癌症。确定驱动卵巢癌疾病进展的分子机制是提供治疗方法、改善诊断以及将临床行为与疾病病因联系起来的关键一步。识别能够分层预后的分子相互作用是促进临床分子视角的关键。
癌症基因组图谱最近提供了500多名患者的分子特征。我们使用了TCGA多分析研究、另外两个数据集以及我们开发的一组计算算法。这些计算算法基于通过基因表达识别网络改变并量化网络行为的方法。我们识别出一种网络生物标志物,它能显著地对卵巢癌患者的生存率进行分层。有趣的是,单个或一组基因的表达水平并不能解释预后分层情况。所发现的生物标志物由血小板衍生生长因子(PDGF)通路周围的网络组成。该生物标志物能够实现预后分层。
本文所展示的工作通过基因表达网络的力量,证明了PDGF网络在驱动疾病进程中的关键性。在揭示网络内驱动表型的特定相互作用时,我们推动了靶向治疗,促进了预后评估,并为隐藏的疾病异质性提供了新的视角。