Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim/Ruhr, Germany.
Chem Commun (Camb). 2012 Feb 18;48(15):2055-70. doi: 10.1039/c2cc17070a. Epub 2012 Jan 12.
While the Suzuki coupling has gained paramount importance, the basic set-up of the reaction has remained essentially unchanged for decades. It consists of the palladium-catalyzed coupling of organoboron reagents with aryl- or alkenyl halides, -sulfonates or related electrophiles in the presence of a base. One of the few alternative formats for this transformation is the '9-MeO-9-BBN variant', which is distinguished by not requiring an added base as a promoter. Rather, polar organometallic reagents R-M (R = Me, alkyl, aryl, heteroaryl, alkenyl, alkynyl etc.) are first intercepted with 9-MeO-9-BBN to give the corresponding borinate complexes, which then pass the R-group onto an organopalladium complex generated in situ as the electrophilic partner. This procedure allowed the structural reach of the Suzuki coupling to be extended, and served in a host of advanced applications, most notably for elaborate sp-sp(2) and sp(3)-sp(2) coupling processes.
虽然铃木偶联反应已经变得至关重要,但该反应的基本设置几十年来基本上没有变化。它包括钯催化的有机硼试剂与芳基或烯基卤化物、-磺酸酯或相关亲电试剂在碱存在下的偶联。这种转化的少数替代格式之一是“9-MeO-9-BBN 变体”,其特点是不需要添加碱作为促进剂。相反,极性有机金属试剂 R-M(R = Me、烷基、芳基、杂芳基、烯基、炔基等)首先与 9-MeO-9-BBN 相互作用得到相应的硼酸酯络合物,然后将 R 基团转移到作为亲电体原位生成的有机钯络合物上。该方法扩展了铃木偶联反应的结构范围,并在许多高级应用中得到了应用,尤其是在精心设计的 sp-sp(2)和 sp(3)-sp(2)偶联过程中。