Suppr超能文献

培养的犬肿瘤细胞分泌的可溶性因子对犬髓样细胞的抑制作用。

Suppression of canine myeloid cells by soluble factors from cultured canine tumor cells.

作者信息

Wasserman J, Diese L, VanGundy Z, London C, Carson W E, Papenfuss T L

机构信息

Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA.

出版信息

Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):420-30. doi: 10.1016/j.vetimm.2011.12.018. Epub 2011 Dec 28.

Abstract

BACKGROUND

Cancer profoundly affects immunity and causes immunosuppression that contributes to tumor escape, metastases and resistance to therapy. The mechanisms by which cancer cells influence immune cells are not fully known but both innate and adaptive immune cells can be altered by cancer. Myeloid cells are innate immune cells that comprise the mononuclear phagocytic system (MPS) and include monocytes, macrophages, dendritic cells (DCs) and their progenitors. Myeloid cells play important roles in both the promotion and regulation of immune responses. Dysregulated myeloid cells are increasingly being recognized as contributing to cancer-related immunosuppression. This study investigated whether soluble factors produced by canine tumor cells inhibited canine myeloid cell function.

METHODS

These studies investigated the utility of using the canine DH82 cell line for assessment of canine myeloid responses to tumor-derived soluble factors (TDSFs). Phenotypic comparisons to canine bone marrow-derived DCs (BM-DCs) and bone marrow-derived macrophages (BM-MΦs) were performed and expression of myeloid cell markers CD11b, CD11c, CD80, and major histocompatibility complex (MHC) class II were evaluated by flow cytometry. Phenotypic and functional changes of DC populations were then determined following exposure to tumor-conditioned media (TCM) from canine osteosarcoma, melanoma and mammary carcinoma cell lines.

RESULTS

We found that the canine BM-DCs and the DH82 cell line shared similar CD11b, CD11c and MHC II expression and morphologic characteristics that were distinct from canine BM-MΦs. Myeloid cells exposed to TDSFs showed decreased expression of MHC class II and CD80, had reduced phagocytic activity and suppressed the proliferation of responder immune cells.

CONCLUSION

These results show that soluble factors secreted from canine tumor cells suppress the activation and function of canine myeloid cells. Our results suggest that, similar to humans, dysregulated myeloid cells may contribute to immunosuppression in dogs with cancer.

摘要

背景

癌症会深刻影响免疫力并导致免疫抑制,这有助于肿瘤逃逸、转移及对治疗产生抗性。癌细胞影响免疫细胞的机制尚不完全清楚,但先天免疫细胞和适应性免疫细胞均可被癌症改变。髓样细胞是先天免疫细胞,构成单核吞噬系统(MPS),包括单核细胞、巨噬细胞、树突状细胞(DC)及其祖细胞。髓样细胞在免疫反应的促进和调节中均发挥重要作用。失调的髓样细胞越来越被认为与癌症相关的免疫抑制有关。本研究调查了犬肿瘤细胞产生的可溶性因子是否会抑制犬髓样细胞功能。

方法

这些研究探讨了使用犬DH82细胞系评估犬髓样细胞对肿瘤衍生可溶性因子(TDSFs)反应的效用。对犬骨髓来源的DC(BM-DC)和骨髓来源的巨噬细胞(BM-MΦ)进行了表型比较,并通过流式细胞术评估了髓样细胞标志物CD11b、CD11c、CD80和主要组织相容性复合体(MHC)II类的表达。然后在暴露于来自犬骨肉瘤、黑色素瘤和乳腺癌细胞系的肿瘤条件培养基(TCM)后,确定DC群体的表型和功能变化。

结果

我们发现犬BM-DC和DH82细胞系具有相似的CD11b、CD11c和MHC II表达以及形态特征,这些特征与犬BM-MΦ不同。暴露于TDSFs的髓样细胞显示MHC II类和CD80的表达降低,吞噬活性降低,并抑制反应性免疫细胞的增殖。

结论

这些结果表明,犬肿瘤细胞分泌的可溶性因子会抑制犬髓样细胞的活化和功能。我们的结果表明,与人类相似,失调的髓样细胞可能导致患癌犬的免疫抑制。

相似文献

1
Suppression of canine myeloid cells by soluble factors from cultured canine tumor cells.
Vet Immunol Immunopathol. 2012 Jan 15;145(1-2):420-30. doi: 10.1016/j.vetimm.2011.12.018. Epub 2011 Dec 28.
2
Bone marrow-derived dendritic cell vaccination of dogs with naturally occurring melanoma by using human gp100 antigen.
J Vet Intern Med. 2005 Jan-Feb;19(1):56-63. doi: 10.1892/0891-6640(2005)19<56:bmdcvo>2.0.co;2.
5
An allogeneic hybrid-cell fusion vaccine against canine mammary cancer.
Vet Immunol Immunopathol. 2008 Jun 15;123(3-4):289-304. doi: 10.1016/j.vetimm.2008.02.013. Epub 2008 Feb 26.
6
Generation of blood-derived dendritic cells in dogs with oral malignant melanoma.
J Comp Pathol. 2002 Feb-Apr;126(2-3):238-41. doi: 10.1053/jcpa.2001.0542.
10
IRAK-M modulates expression of IL-10 and cell surface markers CD80 and MHC II after bacterial re-stimulation of tolerized dendritic cells.
Immunol Lett. 2012 May 30;144(1-2):49-59. doi: 10.1016/j.imlet.2012.03.006. Epub 2012 Mar 28.

引用本文的文献

3
Bacterial urinary tract infection and subclinical bacteriuria in dogs receiving antineoplastic chemotherapy.
J Vet Intern Med. 2022 May;36(3):1005-1015. doi: 10.1111/jvim.16410. Epub 2022 May 7.
4
DH82 Canine and RAW264.7 Murine Macrophage Cell Lines Display Distinct Activation Profiles Upon Interaction With .
Front Cell Infect Microbiol. 2020 Jun 12;10:247. doi: 10.3389/fcimb.2020.00247. eCollection 2020.
5
Canine Macrophage DH82 Cell Line As a Model to Study Susceptibility to Infection.
Front Immunol. 2017 May 31;8:604. doi: 10.3389/fimmu.2017.00604. eCollection 2017.
6
Association of Canine Osteosarcoma and Monocyte Phenotype and Chemotactic Function.
J Vet Intern Med. 2016 Jul;30(4):1167-78. doi: 10.1111/jvim.13983. Epub 2016 Jun 23.
8
The immunotherapy of canine osteosarcoma: a historical and systematic review.
J Vet Intern Med. 2015 May-Jun;29(3):759-69. doi: 10.1111/jvim.12603. Epub 2015 Apr 30.
9
CSPG4-specific immunity and survival prolongation in dogs with oral malignant melanoma immunized with human CSPG4 DNA.
Clin Cancer Res. 2014 Jul 15;20(14):3753-62. doi: 10.1158/1078-0432.CCR-13-3042. Epub 2014 May 29.

本文引用的文献

1
Dog models of naturally occurring cancer.
Trends Mol Med. 2011 Jul;17(7):380-8. doi: 10.1016/j.molmed.2011.02.004. Epub 2011 Mar 24.
3
Myeloid cell diversification and complexity: an old concept with new turns in oncology.
Cancer Metastasis Rev. 2011 Mar;30(1):27-43. doi: 10.1007/s10555-011-9268-1.
4
Guiding the "misguided" - functional conditioning of dendritic cells for the DC-based immunotherapy against tumours.
Eur J Immunol. 2011 Jan;41(1):18-25. doi: 10.1002/eji.201040543. Epub 2010 Dec 9.
5
Association of blood monocyte and lymphocyte count and disease-free interval in dogs with osteosarcoma.
J Vet Intern Med. 2010 Nov-Dec;24(6):1439-44. doi: 10.1111/j.1939-1676.2010.0591.x. Epub 2010 Sep 14.
6
Decreased ratio of CD8+ T cells to regulatory T cells associated with decreased survival in dogs with osteosarcoma.
J Vet Intern Med. 2010 Sep-Oct;24(5):1118-23. doi: 10.1111/j.1939-1676.2010.0557.x. Epub 2010 Jul 28.
7
Myeloid cells in the tumor microenvironment: modulation of tumor angiogenesis and tumor inflammation.
J Oncol. 2010;2010:201026. doi: 10.1155/2010/201026. Epub 2010 May 16.
8
Molecular pathways and targets in cancer-related inflammation.
Ann Med. 2010 Apr;42(3):161-70. doi: 10.3109/07853890903405753.
9
Comparative analysis of canine monocyte- and bone-marrow-derived dendritic cells.
Vet Res. 2010 Jul-Aug;41(4):40. doi: 10.1051/vetres/2010012. Epub 2010 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验