Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States.
Biochemistry. 2012 Feb 14;51(6):1257-68. doi: 10.1021/bi2017624. Epub 2012 Feb 3.
Human small heat shock protein 27 (Hsp27) undergoes concentration-dependent equilibrium dissociation from an ensemble of large oligomers to a dimer. This phenomenon plays a critical role in Hsp27 chaperone activity in vitro enabling high affinity binding to destabilized proteins. In vivo dissociation, which is regulated by phosphorylation, controls Hsp27 role in signaling pathways. In this study, we explore the sequence determinants of Hsp27 dissociation and define the structural basis underlying the increased affinity of Hsp27 dimers to client proteins. A systematic cysteine mutagenesis is carried out to identify residues in the N-terminal domain important for the equilibrium between Hsp27 oligomers and dimers. In addition, spin-labels were attached to the cysteine mutants to enable electron paramagnetic resonance (EPR) analysis of residue environment and solvent accessibility in the context of the large oligomers, upon dissociation to the dimer, and following complex formation with the model substrate T4 Lysozyme (T4L). The mutagenic analysis identifies residues that modulate the equilibrium dissociation in favor of the dimer. EPR analysis reveals that oligomer dissociation disrupts subunit contacts leading to the exposure of Hsp27 N-terminal domain to the aqueous solvent. Moreover, regions of this domain are highly dynamic with no evidence of a packed core. Interaction between T4L and sequences in this domain is inferred from transition of spin-labels to a buried environment in the substrate/Hsp27 complex. Together, the data provide the first structural analysis of sHSP dissociation and support a model of chaperone activity wherein unstructured and highly flexible regions in the N-terminal domain are critical for substrate binding.
人源小分子热休克蛋白 27(Hsp27)在浓度依赖性平衡下从一系列大分子寡聚物中解离为二聚体。这种现象在 Hsp27 分子伴侣的体外活性中起着关键作用,使其能够与不稳定的蛋白质高亲和力结合。体内解离受磷酸化调节,控制 Hsp27 在信号通路中的作用。在这项研究中,我们探讨了 Hsp27 解离的序列决定因素,并确定了 Hsp27 二聚体与客户蛋白亲和力增加的结构基础。我们进行了系统的半胱氨酸突变,以确定 N 端结构域中对 Hsp27 寡聚体和二聚体之间平衡重要的残基。此外,还将自旋标记物附着到半胱氨酸突变体上,以便在大寡聚体的情况下,通过解聚为二聚体以及与模型底物 T4 溶菌酶(T4L)形成复合物,进行电子顺磁共振(EPR)分析残基环境和溶剂可及性。突变分析确定了调节有利于二聚体平衡解离的残基。EPR 分析表明,寡聚体解离破坏了亚基接触,导致 Hsp27 N 端结构域暴露于水性溶剂中。此外,该结构域的这些区域具有高度的动态性,没有被包装核心的证据。T4L 与该结构域中序列之间的相互作用是从自旋标记物向底物/Hsp27 复合物中埋藏环境的转变推断出来的。总的来说,这些数据提供了对 sHSP 解离的首次结构分析,并支持了分子伴侣活性的模型,其中 N 端结构域中的无规卷曲和高度灵活的区域对于底物结合至关重要。