Suppr超能文献

地椒菌素 A-E,内生真菌 Geopyxis aff. majalis 和 Geopyxis sp. AZ0066 来源的贝壳杉烷二萜:地椒菌素及其类似物的结构-活性关系。

Geopyxins A-E, ent-kaurane diterpenoids from endolichenic fungal strains Geopyxis aff. majalis and Geopyxis sp. AZ0066: structure-activity relationships of geopyxins and their analogues.

机构信息

SW Center for Natural Products Research and Commercialization, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States.

出版信息

J Nat Prod. 2012 Mar 23;75(3):361-9. doi: 10.1021/np200769q. Epub 2012 Jan 20.

Abstract

Four new ent-kaurane diterpenoids, geopyxins A-D (1-4), were isolated from Geopyxis aff. majalis, a fungus occurring in the lichen Pseudevernia intensa, whereas Geopyxis sp. AZ0066 inhabiting the same host afforded two new ent-kaurane diterpenoids, geopyxins E and F (5 and 6), together with 1 and 3. The structures of 1-6 were established on the basis of their spectroscopic data, while the absolute configurations were assigned using modified Mosher's ester method. Methylation of 1-3, 5, and 6 gave their corresponding methyl esters 7-11. On acetylation, 1 and 7 yielded their corresponding monoacetates 12 and 14 and diacetates 13 and 15. All compounds were evaluated for their cytotoxic and heat-shock induction activities. Compounds 2, 7-10, 12, 14, and 15 showed cytotoxic activity in the low micromolar range against all five cancer cell lines tested, but only compounds 7-9, 14, and 15 were found to activate the heat-shock response at similar concentrations. From a preliminary structure-activity perspective, the electrophilic α,β-unsaturated ketone carbonyl motif present in all compounds except 6 and 11 was found to be necessary but not sufficient for both cytotoxicity and heat-shock activation.

摘要

从出现在 Pseudevernia intensa 地衣中的真菌 Geopyxis aff. majalis 中分离得到四个新的-ent-贝壳杉烷二萜,分别为 geopyxin A-D(1-4),而栖息在同一宿主上的 Geopyxis sp. AZ0066 则产生了两个新的-ent-贝壳杉烷二萜,分别为 geopyxin E 和 F(5 和 6),以及 1 和 3。基于其光谱数据确定了 1-6 的结构,而绝对构型则使用改进的 Mosher 酯法进行了分配。1-3、5 和 6 的甲基化得到了它们相应的甲酯 7-11。在乙酰化作用下,1 和 7 分别生成了它们相应的单乙酸酯 12 和 14 以及二乙酸酯 13 和 15。所有化合物都评估了其细胞毒性和热休克诱导活性。化合物 2、7-10、12、14 和 15 在低微摩尔范围内对所有五种测试的癌细胞系均显示出细胞毒性活性,但只有化合物 7-9、14 和 15 在相似浓度下被发现激活热休克反应。从初步的结构-活性角度来看,除了 6 和 11 之外,所有化合物中存在的亲电 α,β-不饱和酮羰基基序被发现对于细胞毒性和热休克激活是必要的,但不是充分的。

相似文献

3
Cytotoxic diterpenoids from Pteris ensiformis.
J Asian Nat Prod Res. 2017 Feb;19(2):188-193. doi: 10.1080/10286020.2016.1274307.
4
An unusual dihydrobenzofuroisocoumarin and ent-kaurane diterpenoids from Pteris multifida.
J Asian Nat Prod Res. 2015 May;17(5):423-9. doi: 10.1080/10286020.2015.1040777. Epub 2015 May 13.
5
Cytotoxic ent-kaurane diterpenoids from Isodon henryi.
Planta Med. 2009 Jan;75(1):65-9. doi: 10.1055/s-0028-1088331. Epub 2008 Nov 24.
6
ent-Kaurane and cembrane diterpenoids from Isodon sculponeatus and their cytotoxicity.
J Nat Prod. 2009 Oct;72(10):1851-6. doi: 10.1021/np900406c.
7
Kaurane and abietane diterpenoids from the roots of Tripterygium wilfordii and their cytotoxic evaluation.
Bioorg Med Chem Lett. 2016 Jun 15;26(12):2942-2946. doi: 10.1016/j.bmcl.2016.04.026. Epub 2016 Apr 12.
8
ent-Kaurane diterpenoids from Isodon scoparius.
J Nat Prod. 2009 Jan;72(1):125-9. doi: 10.1021/np800484j.
9
Cytotoxic ent-kaurane diterpenoids from Isodon rubescens var. lushiensis.
J Nat Prod. 2010 Jun 25;73(6):1112-6. doi: 10.1021/np100110u.
10
ent-Kaurane diterpenoids from Isodon pharicus.
J Nat Prod. 2009 Jun;72(6):988-93. doi: 10.1021/np9000366.

引用本文的文献

1
A Biosynthetic and Taxonomic Atlas of the Global Lichen Holobiont.
Environ Microbiol. 2025 Jun;27(6):e70112. doi: 10.1111/1462-2920.70112.
3
Novel Triterpenoid Alkaloids With Their Potential Cytotoxic Activity From the Roots of .
Front Chem. 2022 Apr 29;10:885487. doi: 10.3389/fchem.2022.885487. eCollection 2022.
4
Cycloartane- and Lanostane-Type Triterpenoids from the Resin of AZ-2, a Byproduct of Guayule Rubber Production.
ACS Omega. 2021 Jun 4;6(23):15486-15498. doi: 10.1021/acsomega.1c01714. eCollection 2021 Jun 15.
8
Non-covalent NRF2 Activation Confers Greater Cellular Protection than Covalent Activation.
Cell Chem Biol. 2019 Oct 17;26(10):1427-1435.e5. doi: 10.1016/j.chembiol.2019.07.011. Epub 2019 Aug 8.
9
Modulation of polyketide biosynthetic pathway of the endophytic fungus, sp. FL0768, by copper (II) and anacardic acid.
Phytochem Lett. 2018 Dec;28:157-163. doi: 10.1016/j.phytol.2018.10.011. Epub 2018 Oct 25.
10
Extracts of sp. Inhibit Receptor Activator of Nuclear Factor-κB Ligand-Mediated Osteoclast Differentiation.
J Bone Metab. 2019 May;26(2):113-121. doi: 10.11005/jbm.2019.26.2.113. Epub 2019 May 31.

本文引用的文献

1
Using the heat-shock response to discover anticancer compounds that target protein homeostasis.
ACS Chem Biol. 2012 Feb 17;7(2):340-9. doi: 10.1021/cb200353m. Epub 2011 Nov 30.
3
Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize.
Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5455-60. doi: 10.1073/pnas.1014714108. Epub 2011 Mar 14.
4
Proteomic approaches to the characterization of protein thiol modification.
Curr Opin Chem Biol. 2011 Feb;15(1):120-8. doi: 10.1016/j.cbpa.2010.11.003. Epub 2010 Dec 2.
5
Quantitative reactivity profiling predicts functional cysteines in proteomes.
Nature. 2010 Dec 9;468(7325):790-5. doi: 10.1038/nature09472. Epub 2010 Nov 17.
7
Community analysis reveals close affinities between endophytic and endolichenic fungi in mosses and lichens.
Microb Ecol. 2010 Aug;60(2):340-53. doi: 10.1007/s00248-010-9698-2. Epub 2010 Jul 13.
9
Xenohormesis: health benefits from an eon of plant stress response evolution.
Cell Stress Chaperones. 2010 Nov;15(6):761-70. doi: 10.1007/s12192-010-0206-x. Epub 2010 Jun 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验