Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA.
Nat Chem. 2011 Nov 6;4(2):83-9. doi: 10.1038/nchem.1192.
Metal-organic frameworks (MOFs) are porous materials constructed from modular molecular building blocks, typically metal clusters and organic linkers. These can, in principle, be assembled to form an almost unlimited number of MOFs, yet materials reported to date represent only a tiny fraction of the possible combinations. Here, we demonstrate a computational approach to generate all conceivable MOFs from a given chemical library of building blocks (based on the structures of known MOFs) and rapidly screen them to find the best candidates for a specific application. From a library of 102 building blocks we generated 137,953 hypothetical MOFs and for each one calculated the pore-size distribution, surface area and methane-storage capacity. We identified over 300 MOFs with a predicted methane-storage capacity better than that of any known material, and this approach also revealed structure-property relationships. Methyl-functionalized MOFs were frequently top performers, so we selected one such promising MOF and experimentally confirmed its predicted capacity.
金属-有机骨架(MOFs)是由模块化分子构建块构建的多孔材料,通常为金属簇和有机连接物。这些在理论上可以组装成几乎无限数量的 MOFs,但迄今为止报道的材料仅代表可能组合的一小部分。在这里,我们展示了一种从给定的构建块化学库(基于已知 MOFs 的结构)生成所有可想象的 MOFs 的计算方法,并对它们进行快速筛选,以找到特定应用的最佳候选物。从 102 个构建块的库中,我们生成了 137,953 个假设的 MOFs,并为每个 MOF 计算了孔径分布、表面积和甲烷存储容量。我们确定了超过 300 个具有预测甲烷存储容量优于任何已知材料的 MOFs,并且该方法还揭示了结构-性能关系。甲基功能化的 MOFs 通常是表现最好的,因此我们选择了一种这样有前途的 MOF,并通过实验证实了其预测的容量。