Department of Biomedical Engineering, Maastricht University, Maastricht, The Netherlands.
J Cardiovasc Transl Res. 2012 Apr;5(2):159-69. doi: 10.1007/s12265-012-9346-y. Epub 2012 Jan 21.
Computer models have become more and more a research tool to obtain mechanistic insight in the effects of dyssynchrony and heart failure. Increasing computational power in combination with increasing amounts of experimental and clinical data enables the development of mathematical models that describe electrical and mechanical behavior of the heart. By combining models based on data at the molecular and cellular level with models that describe organ function, so-called multi-scale models are created that describe heart function at different length and time scales. In this review, we describe basic modules that can be identified in multi-scale models of cardiac electromechanics. These modules simulate ionic membrane currents, calcium handling, excitation-contraction coupling, action potential propagation, and cardiac mechanics and hemodynamics. In addition, we discuss adaptive modeling approaches that aim to address long-term effects of diseases and therapy on growth, changes in fiber orientation, ionic membrane currents, and calcium handling. Finally, we discuss the first developments in patient-specific modeling. While current models still have shortcomings, well-chosen applications show promising results on some ultimate goals: understanding mechanisms of dyssynchronous heart failure and tuning pacing strategy to a particular patient, even before starting the therapy.
计算机模型已成为获取心律失常和心力衰竭影响的机械洞察力的研究工具。计算能力的提高与实验和临床数据的增加相结合,使得可以开发描述心脏电和机械行为的数学模型。通过将基于分子和细胞水平数据的模型与描述器官功能的模型相结合,可以创建所谓的多尺度模型,以不同的长度和时间尺度描述心脏功能。在这篇综述中,我们描述了可以在心脏电机械多尺度模型中识别的基本模块。这些模块模拟离子膜电流、钙处理、兴奋-收缩偶联、动作电位传播以及心脏力学和血液动力学。此外,我们还讨论了自适应建模方法,旨在解决疾病和治疗对生长、纤维方向变化、离子膜电流和钙处理的长期影响。最后,我们讨论了患者特异性建模的第一个发展。虽然当前的模型仍然存在一些缺陷,但经过精心选择的应用在一些最终目标上显示出了有希望的结果:了解心律失常性心力衰竭的机制,并在开始治疗之前为特定患者调整起搏策略。