Department of Biomedical Engineering and Institute of Computational Medicine, The Johns Hopkins University, Baltimore, Maryland; and.
Am J Physiol Heart Circ Physiol. 2013 Oct 15;305(8):H1265-73. doi: 10.1152/ajpheart.00426.2013. Epub 2013 Aug 9.
In addition to the left bundle branch block type of electrical activation, there are further remodeling aspects associated with dyssynchronous heart failure (HF) that affect the electromechanical behavior of the heart. Among the most important are altered ventricular structure (both geometry and fiber/sheet orientation), abnormal Ca(2+) handling, slowed conduction, and reduced wall stiffness. In dyssynchronous HF, the electromechanical delay (EMD), the time interval between local myocyte depolarization and myofiber shortening onset, is prolonged. However, the contributions of the four major HF remodeling aspects in extending EMD in the dyssynchronous failing heart remain unknown. The goal of this study was to determine the individual and combined contributions of HF-induced remodeling aspects to EMD prolongation. We used MRI-based models of dyssynchronous nonfailing and HF canine electromechanics and constructed additional models in which varying combinations of the four remodeling aspects were represented. A left bundle branch block electrical activation sequence was simulated in all models. The simulation results revealed that deranged Ca(2+) handling is the primary culprit in extending EMD in dyssynchronous HF, with the other aspects of remodeling contributing insignificantly. Mechanistically, we found that abnormal Ca(2+) handling in dyssynchronous HF slows myofiber shortening velocity at the early-activated septum and depresses both myofiber shortening and stretch rate at the late-activated lateral wall. These changes in myofiber dynamics delay the onset of myofiber shortening, thus giving rise to prolonged EMD in dyssynchronous HF.
除了左束支传导阻滞类型的电激活外,还有与不同步性心力衰竭(HF)相关的进一步重塑方面,这些方面会影响心脏的机电行为。其中最重要的是心室结构的改变(包括几何形状和纤维/薄片方向)、异常的 Ca(2+)处理、传导减慢和壁僵硬度降低。在不同步性 HF 中,机电延迟(EMD),即局部心肌细胞去极化和肌纤维缩短起始之间的时间间隔延长。然而,HF 重塑的四个主要方面在延长不同步性衰竭心脏的 EMD 中的贡献仍然未知。本研究的目的是确定 HF 诱导的重塑方面对 EMD 延长的单独和综合贡献。我们使用基于 MRI 的不同步性非衰竭和 HF 犬类机电模型,并构建了另外的模型,其中代表了四个重塑方面的不同组合。在所有模型中模拟了左束支传导阻滞电激活序列。模拟结果表明,紊乱的 Ca(2+)处理是延长不同步性 HF 中 EMD 的主要原因,而其他重塑方面的贡献微不足道。从机制上讲,我们发现不同步性 HF 中的异常 Ca(2+)处理会降低早期激活的间隔肌纤维缩短速度,并降低晚期激活的外侧壁的肌纤维缩短和拉伸速度。肌纤维动力学的这些变化会延迟肌纤维缩短的起始,从而导致不同步性 HF 中 EMD 延长。