Suppr超能文献

多模态神经影像学数据分析。

Analysis of multimodal neuroimaging data.

机构信息

Department of Machine Learning, Berlin Institute of Technology, Berlin 10587, Germany.

出版信息

IEEE Rev Biomed Eng. 2011;4:26-58. doi: 10.1109/RBME.2011.2170675.

Abstract

Each method for imaging brain activity has technical or physiological limits. Thus, combinations of neuroimaging modalities that can alleviate these limitations such as simultaneous recordings of neurophysiological and hemodynamic activity have become increasingly popular. Multimodal imaging setups can take advantage of complementary views on neural activity and enhance our understanding about how neural information processing is reflected in each modality. However, dedicated analysis methods are needed to exploit the potential of multimodal methods. Many solutions to this data integration problem have been proposed, which often renders both comparisons of results and the choice of the right method for the data at hand difficult. In this review we will discuss different multimodal neuroimaging setups, the advances achieved in basic research and clinical application and the methods used. We will provide a comprehensive overview of mathematical tools reoccurring in multimodal neuroimaging studies for artifact removal, data-driven and model-driven analyses, enabling the practitioner to try established or new combinations from these algorithmic building blocks.

摘要

每种用于大脑活动成像的方法都有其技术或生理上的限制。因此,结合可以缓解这些限制的神经影像学模式,如同时记录神经生理和血液动力学活动,已经变得越来越流行。多模态成像设置可以利用对神经活动的互补观点,并增强我们对神经信息处理如何反映在每种模式中的理解。然而,需要专门的分析方法来利用多模态方法的潜力。已经提出了许多解决这个数据集成问题的方法,这往往使得对结果的比较和为手头的数据选择正确的方法都变得困难。在这篇综述中,我们将讨论不同的多模态神经影像学设置、在基础研究和临床应用中取得的进展以及所使用的方法。我们将全面概述多模态神经影像学研究中经常使用的数学工具,用于去除伪影、数据驱动和模型驱动分析,使从业者能够尝试从这些算法构建块中建立或新的组合。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验