Hirano Michio, Garone Caterina, Quinzii Catarina M
Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA.
Biochim Biophys Acta. 2012 May;1820(5):625-31. doi: 10.1016/j.bbagen.2012.01.006. Epub 2012 Jan 18.
Although causative mutations have been identified for numerous mitochondrial disorders, few disease-modifying treatments are available. Two examples of treatable mitochondrial disorders are coenzyme Q(10) (CoQ(10) or ubiquinone) deficiency and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE).
Here, we describe clinical and molecular features of CoQ(10) deficiencies and MNGIE and explain how understanding their pathomechanisms have led to rationale therapies. Primary CoQ(10) deficiencies, due to mutations in genes required for ubiquinone biosynthesis, and secondary deficiencies, caused by genetic defects not directly related to CoQ(10) biosynthesis, often improve with CoQ(10) supplementation. In vitro and in vivo studies of CoQ(10) deficiencies have revealed biochemical alterations that may account for phenotypic differences among patients and variable responses to therapy. In contrast to the heterogeneous CoQ(10) deficiencies, MNGIE is a single autosomal recessive disease due to mutations in the TYMP gene encoding thymidine phosphorylase (TP). In MNGIE, loss of TP activity causes toxic accumulations of the nucleosides thymidine and deoxyuridine that are incorporated by the mitochondrial pyrimidine salvage pathway and cause deoxynucleoside triphosphate pool imbalances, which, in turn cause mtDNA instability. Allogeneic hematopoetic stem cell transplantation to restore TP activity and eliminate toxic metabolites is a promising therapy for MNGIE.
CoQ(10) deficiencies and MNGIE demonstrate the feasibility of treating specific mitochondrial disorders through replacement of deficient metabolites or via elimination of excessive toxic molecules.
Studies of CoQ(10) deficiencies and MNGIE illustrate how understanding the pathogenic mechanisms of mitochondrial diseases can lead to meaningful therapies. This article is part of a Special Issue entitled: Biochemistry of Mitochondria, Life and Intervention 2010.
尽管已鉴定出许多线粒体疾病的致病突变,但可用的疾病修饰治疗方法却很少。可治疗的线粒体疾病的两个例子是辅酶Q(10)(CoQ(10)或泛醌)缺乏症和线粒体神经胃肠性脑肌病(MNGIE)。
在此,我们描述CoQ(10)缺乏症和MNGIE的临床和分子特征,并解释对其发病机制的理解如何带来合理的治疗方法。由于泛醌生物合成所需基因的突变导致的原发性CoQ(10)缺乏症,以及由与CoQ(10)生物合成无直接关系的遗传缺陷引起的继发性缺乏症,通常通过补充CoQ(10)而改善。对CoQ(10)缺乏症的体外和体内研究揭示了可能解释患者表型差异和治疗反应差异的生化改变。与异质性CoQ(10)缺乏症不同,MNGIE是一种单基因常染色体隐性疾病,由编码胸苷磷酸化酶(TP)的TYMP基因突变引起。在MNGIE中,TP活性丧失导致核苷胸苷和脱氧尿苷的毒性积累,这些核苷被线粒体嘧啶补救途径掺入并导致脱氧核苷三磷酸池失衡,进而导致mtDNA不稳定。同种异体造血干细胞移植以恢复TP活性并消除有毒代谢产物是治疗MNGIE的一种有前景的疗法。
CoQ(10)缺乏症和MNGIE证明了通过替代缺乏的代谢产物或消除过量有毒分子来治疗特定线粒体疾病的可行性。
对CoQ(10)缺乏症和MNGIE的研究说明了对线粒体疾病致病机制的理解如何能带来有意义的治疗方法。本文是名为《线粒体生物化学、生命与干预2010》特刊的一部分。