Suppr超能文献

SAMPL3 预测主客体结合亲和力:评估广义力场的准确性。

Prediction of SAMPL3 host-guest binding affinities: evaluating the accuracy of generalized force-fields.

机构信息

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, Room# 3224, La Jolla, CA 92093-0736, USA.

出版信息

J Comput Aided Mol Des. 2012 May;26(5):517-25. doi: 10.1007/s10822-012-9544-3. Epub 2012 Jan 25.

Abstract

We used the second-generation mining minima method (M2) to compute the binding affinities of the novel host-guest complexes in the SAMPL3 blind prediction challenge. The predictions were in poor agreement with experiment, and we conjectured that much of the error might derive from the force field, CHARMm with Vcharge charges. Repeating the calculations with other generalized force-fields led to no significant improvement, and we observed that the predicted affinities were highly sensitive to the choice of force-field. We therefore embarked on a systematic evaluation of a set of generalized force fields, based upon comparisons with PM6-DH2, a fast yet accurate semi-empirical quantum mechanics method. In particular, we compared gas-phase interaction energies and entropies for the host-guest complexes themselves, as well as for smaller chemical fragments derived from the same molecules. The mean deviations of the force field interaction energies from the quantum results were greater than 3 kcal/mol and 9 kcal/mol, for the fragments and host-guest systems respectively. We further evaluated the accuracy of force-fields for computing the vibrational entropies and found the mean errors to be greater than 4 kcal/mol. Given these errors in energy and entropy, it is not surprising in retrospect that the predicted binding affinities deviated from the experiment by several kcal/mol. These results emphasize the need for improvements in generalized force-fields and also highlight the importance of systematic evaluation of force-field parameters prior to evaluating different free-energy methods.

摘要

我们使用第二代挖掘极小值方法(M2)来计算 SAMPL3 盲测挑战中新型主体-客体配合物的结合亲和力。预测结果与实验结果相差较大,我们推测大部分误差可能来自于力场,即带有 Vcharge 电荷的 CHARMm。使用其他广义力场重复计算并没有显著改善,我们观察到预测亲和力对力场的选择非常敏感。因此,我们着手对一组广义力场进行系统评估,基于与 PM6-DH2 的比较,PM6-DH2 是一种快速而准确的半经验量子力学方法。特别是,我们比较了主体-客体配合物本身以及来自相同分子的较小化学片段的气相相互作用能和熵。对于片段和主体-客体体系,力场相互作用能与量子结果的平均偏差大于 3 kcal/mol 和 9 kcal/mol。我们进一步评估了力场计算振动熵的准确性,发现平均误差大于 4 kcal/mol。考虑到这些能量和熵的误差,预测的结合亲和力与实验值相差几个 kcal/mol也就不足为奇了。这些结果强调了改进广义力场的必要性,也突出了在评估不同自由能方法之前对力场参数进行系统评估的重要性。

相似文献

7
Blind prediction of host-guest binding affinities: a new SAMPL3 challenge.盲法预测主客体结合亲和力:SAMPL3 挑战赛新课题。
J Comput Aided Mol Des. 2012 May;26(5):475-87. doi: 10.1007/s10822-012-9554-1. Epub 2012 Feb 25.
10
Thermodynamic integration to predict host-guest binding affinities.热力学积分预测主客体结合亲和力。
J Comput Aided Mol Des. 2012 May;26(5):569-76. doi: 10.1007/s10822-012-9542-5. Epub 2012 Feb 16.

引用本文的文献

6
Octanol-water partition coefficient measurements for the SAMPL6 blind prediction challenge.辛醇-水分配系数测量 SAMPL6 盲测挑战。
J Comput Aided Mol Des. 2020 Apr;34(4):405-420. doi: 10.1007/s10822-019-00271-3. Epub 2019 Dec 19.
7
Overview of the SAMPL6 host-guest binding affinity prediction challenge.SAMPL6 主客体结合亲和力预测挑战概述。
J Comput Aided Mol Des. 2018 Oct;32(10):937-963. doi: 10.1007/s10822-018-0170-6. Epub 2018 Nov 10.
8
Bind3P: Optimization of a Water Model Based on Host-Guest Binding Data.Bind3P:基于主客体结合数据的水模型优化。
J Chem Theory Comput. 2018 Jul 10;14(7):3621-3632. doi: 10.1021/acs.jctc.8b00318. Epub 2018 Jun 22.
9
Predicting Binding Free Energies: Frontiers and Benchmarks.预测结合自由能:前沿和基准。
Annu Rev Biophys. 2017 May 22;46:531-558. doi: 10.1146/annurev-biophys-070816-033654. Epub 2017 Apr 7.

本文引用的文献

2
MMFF VI. MMFF94s option for energy minimization studies.MMFF VI。用于能量最小化研究的MMFF94s选项。
J Comput Chem. 1999 May;20(7):720-729. doi: 10.1002/(SICI)1096-987X(199905)20:7<720::AID-JCC7>3.0.CO;2-X.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验