Gomez-Rodriguez M, Grosse-Wentrup M, Hill J, Gharabaghi A, Scholkopf B, Peters J
Max Planck Institute for Intelligent Systems, Tübingen, Germany.
IEEE Int Conf Rehabil Robot. 2011;2011:5975385. doi: 10.1109/ICORR.2011.5975385.
A neurorehabilitation approach that combines robot-assisted active physical therapy and Brain-Computer Interfaces (BCIs) may provide an additional mileage with respect to traditional rehabilitation methods for patients with severe motor impairment due to cerebrovascular brain damage (e.g., stroke) and other neurological conditions. In this paper, we describe the design and modes of operation of a robot-based rehabilitation framework that enables artificial support of the sensorimotor feedback loop. The aim is to increase cortical plasticity by means of Hebbian-type learning rules. A BCI-based shared-control strategy is used to drive a Barret WAM 7-degree-of-freedom arm that guides a subject's arm. Experimental validation of our setup is carried out both with healthy subjects and stroke patients. We review the empirical results which we have obtained to date, and argue that they support the feasibility of future rehabilitative treatments employing this novel approach.
一种将机器人辅助主动物理治疗与脑机接口(BCI)相结合的神经康复方法,相对于传统康复方法而言,可能会为因脑血管脑损伤(如中风)和其他神经系统疾病而导致严重运动障碍的患者带来更多益处。在本文中,我们描述了一种基于机器人的康复框架的设计和操作模式,该框架能够对感觉运动反馈回路进行人工支持。其目的是通过赫布型学习规则来增加皮质可塑性。基于BCI的共享控制策略用于驱动一个引导受试者手臂的巴雷特WAM 7自由度手臂。我们对健康受试者和中风患者都进行了该装置的实验验证。我们回顾了迄今获得的实证结果,并认为这些结果支持了采用这种新方法进行未来康复治疗的可行性。