Altuwaijri Ghadir Ali, Muhammad Ghulam
Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia.
Bioengineering (Basel). 2022 Jul 18;9(7):323. doi: 10.3390/bioengineering9070323.
Brain signals can be captured via electroencephalogram (EEG) and be used in various brain-computer interface (BCI) applications. Classifying motor imagery (MI) using EEG signals is one of the important applications that can help a stroke patient to rehabilitate or perform certain tasks. Dealing with EEG-MI signals is challenging because the signals are weak, may contain artefacts, are dependent on the patient's mood and posture, and have low signal-to-noise ratio. This paper proposes a multi-branch convolutional neural network model called the Multi-Branch EEGNet with Convolutional Block Attention Module (MBEEGCBAM) using attention mechanism and fusion techniques to classify EEG-MI signals. The attention mechanism is applied both channel-wise and spatial-wise. The proposed model is a lightweight model that has fewer parameters and higher accuracy compared to other state-of-the-art models. The accuracy of the proposed model is 82.85% and 95.45% using the BCI-IV2a motor imagery dataset and the high gamma dataset, respectively. Additionally, when using the fusion approach (FMBEEGCBAM), it achieves 83.68% and 95.74% accuracy, respectively.
脑信号可以通过脑电图(EEG)捕获,并用于各种脑机接口(BCI)应用中。利用EEG信号对运动想象(MI)进行分类是重要的应用之一,可帮助中风患者进行康复或执行特定任务。处理EEG-MI信号具有挑战性,因为这些信号微弱、可能包含伪迹、依赖于患者的情绪和姿势,并且信噪比低。本文提出了一种多分支卷积神经网络模型,称为带有卷积块注意力模块的多分支EEGNet(MBEEGCBAM),它使用注意力机制和融合技术对EEG-MI信号进行分类。注意力机制在通道维度和空间维度上均有应用。所提出的模型是一个轻量级模型,与其他现有技术模型相比,具有更少的参数和更高的准确率。使用BCI-IV2a运动想象数据集和高伽马数据集时,所提出模型的准确率分别为82.85%和95.45%。此外,当使用融合方法(FMBEEGCBAM)时,其准确率分别达到83.68%和95.74%。