Suppr超能文献

基于脑电图的运动想象信号分类:使用带有注意力模块的多分支卷积神经网络模型

Electroencephalogram-Based Motor Imagery Signals Classification Using a Multi-Branch Convolutional Neural Network Model with Attention Blocks.

作者信息

Altuwaijri Ghadir Ali, Muhammad Ghulam

机构信息

Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia.

出版信息

Bioengineering (Basel). 2022 Jul 18;9(7):323. doi: 10.3390/bioengineering9070323.

Abstract

Brain signals can be captured via electroencephalogram (EEG) and be used in various brain-computer interface (BCI) applications. Classifying motor imagery (MI) using EEG signals is one of the important applications that can help a stroke patient to rehabilitate or perform certain tasks. Dealing with EEG-MI signals is challenging because the signals are weak, may contain artefacts, are dependent on the patient's mood and posture, and have low signal-to-noise ratio. This paper proposes a multi-branch convolutional neural network model called the Multi-Branch EEGNet with Convolutional Block Attention Module (MBEEGCBAM) using attention mechanism and fusion techniques to classify EEG-MI signals. The attention mechanism is applied both channel-wise and spatial-wise. The proposed model is a lightweight model that has fewer parameters and higher accuracy compared to other state-of-the-art models. The accuracy of the proposed model is 82.85% and 95.45% using the BCI-IV2a motor imagery dataset and the high gamma dataset, respectively. Additionally, when using the fusion approach (FMBEEGCBAM), it achieves 83.68% and 95.74% accuracy, respectively.

摘要

脑信号可以通过脑电图(EEG)捕获,并用于各种脑机接口(BCI)应用中。利用EEG信号对运动想象(MI)进行分类是重要的应用之一,可帮助中风患者进行康复或执行特定任务。处理EEG-MI信号具有挑战性,因为这些信号微弱、可能包含伪迹、依赖于患者的情绪和姿势,并且信噪比低。本文提出了一种多分支卷积神经网络模型,称为带有卷积块注意力模块的多分支EEGNet(MBEEGCBAM),它使用注意力机制和融合技术对EEG-MI信号进行分类。注意力机制在通道维度和空间维度上均有应用。所提出的模型是一个轻量级模型,与其他现有技术模型相比,具有更少的参数和更高的准确率。使用BCI-IV2a运动想象数据集和高伽马数据集时,所提出模型的准确率分别为82.85%和95.45%。此外,当使用融合方法(FMBEEGCBAM)时,其准确率分别达到83.68%和95.74%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9168/9311604/4b97bbfeda34/bioengineering-09-00323-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验