Suppr超能文献

采用意图驱动的功能性电刺激(FES)机器人系统辅助的中风后手腕康复。

Post-stroke wrist rehabilitation assisted with an intention-driven functional electrical stimulation (FES)-robot system.

作者信息

Hu X L, Tong K Y, Li R, Chen M, Xue J J, Ho S K, Chen P N

机构信息

Dept. of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China, SAR.

出版信息

IEEE Int Conf Rehabil Robot. 2011;2011:5975424. doi: 10.1109/ICORR.2011.5975424.

Abstract

In this work, a novel FES-robot system was developed for wrist rehabilitation training after stroke. The FES-robot system could be continuously controlled by electromyography (EMG) from the residual wrist muscles to facilitate wrist flexion and extension tracking tasks on a horizontal plane by providing assistance from both FES and robot parts. The system performance with five different assistive combinations from the FES and robot parts was evaluated by subjects with chronic stroke (n=5). The results suggested that the assistance from the robot part mainly improved the movement accuracy in the tracking tasks; and the assistance from the FES part mainly suppressed the excessive muscular activities from the elbow joint. The best combination was when the assistances from FES and robot was 1:1, and the results showed better wrist tracking performance with less muscle co-contraction from the elbow joint.

摘要

在这项工作中,开发了一种新型的功能性电刺激-机器人系统,用于中风后的手腕康复训练。该功能性电刺激-机器人系统可以通过残余手腕肌肉的肌电图(EMG)进行连续控制,通过功能性电刺激和机器人部件提供的辅助,促进在水平面上的手腕屈伸跟踪任务。5名慢性中风患者(n = 5)对功能性电刺激和机器人部件的五种不同辅助组合的系统性能进行了评估。结果表明,机器人部件的辅助主要提高了跟踪任务中的运动准确性;功能性电刺激部件的辅助主要抑制了肘关节的过度肌肉活动。最佳组合是功能性电刺激和机器人的辅助比例为1:1,结果显示手腕跟踪性能更好,肘关节的肌肉共同收缩更少。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验