Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.
Department of Biomedical Engineering, Cleveland Clinic Foundation, Cleveland, Ohio; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio.
Brain Stimul. 2012 Jul;5(3):369-377. doi: 10.1016/j.brs.2011.05.002. Epub 2011 Jun 2.
Deep brain stimulation (DBS) has steadily evolved into an established surgical therapy for numerous neurological disorders, most notably Parkinson's disease (PD). Traditional DBS technology relies on voltage-controlled stimulation with a single source; however, recent engineering advances are providing current-controlled devices with multiple independent sources. These new stimulators deliver constant current to the brain tissue, irrespective of impedance changes that occur around the electrode, and enable more specific steering of current towards targeted regions of interest. In this study, we examined the impact of current steering between multiple electrode contacts to directly activate three distinct neural populations in the subthalamic region commonly stimulated for the treatment of PD: projection neurons of the subthalamic nucleus (STN), globus pallidus internus (GPi) fibers of the lenticular fasiculus, and internal capsule (IC) fibers of passage. We used three-dimensional finite element electric field models, along with detailed multicompartment cable models of the three neural populations to determine their activations using a wide range of stimulation parameter settings. Our results indicate that selective activation of neural populations largely depends on the location of the active electrode(s). Greater activation of the GPi and STN populations (without activating any side effect related IC fibers) was achieved by current steering with multiple independent sources, compared to a single current source. Despite this potential advantage, it remains to be seen if these theoretical predictions result in a measurable clinical effect that outweighs the added complexity of the expanded stimulation parameter search space generated by the more flexible technology.
深部脑刺激(DBS)已逐渐发展成为治疗多种神经疾病的成熟手术疗法,尤其是帕金森病(PD)。传统的 DBS 技术依赖于单源电压控制刺激;然而,最近的工程进展为具有多个独立源的电流控制设备提供了可能。这些新型刺激器向脑组织提供恒流,而不受电极周围发生的阻抗变化的影响,并能够更精确地将电流引导至目标感兴趣区域。在这项研究中,我们研究了多个电极触点之间的电流引导对直接激活亚丘脑区域中三个不同神经群体的影响,这些神经群体通常被刺激以治疗 PD:亚丘脑核(STN)的投射神经元、豆状核内苍白球纤维(GPi)和内囊(IC)的穿行纤维。我们使用三维有限元电场模型以及这三个神经群体的详细多室电缆模型,使用广泛的刺激参数设置来确定它们的激活情况。我们的结果表明,神经群体的选择性激活在很大程度上取决于活动电极的位置。与单电流源相比,多独立源的电流引导可实现 GPi 和 STN 群体的更大激活(而不会激活任何与副作用相关的 IC 纤维)。尽管存在这种潜在优势,但仍需要观察这些理论预测是否会产生可测量的临床效果,这种效果是否超过了更灵活的技术所产生的扩展刺激参数搜索空间的复杂性增加带来的负面影响。