Suppr超能文献

注意网络中的因果相互作用预测行为表现。

Causal interactions in attention networks predict behavioral performance.

机构信息

J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida 32611, USA.

出版信息

J Neurosci. 2012 Jan 25;32(4):1284-92. doi: 10.1523/JNEUROSCI.2817-11.2012.

Abstract

Lesion and functional brain imaging studies have suggested that there are two anatomically nonoverlapping attention networks. The dorsal frontoparietal network controls goal-oriented top-down deployment of attention; the ventral frontoparietal network mediates stimulus-driven bottom-up attentional reorienting. The interaction between the two networks and its functional significance has been considered in the past but no direct test has been carried out. We addressed this problem by recording fMRI data from human subjects performing a trial-by-trial cued visual spatial attention task in which the subject had to respond to target stimuli in the attended hemifield and ignore all stimuli in the unattended hemifield. Correlating Granger causal influences between regions of interest with behavioral performance, we report two main results. First, stronger Granger causal influences from the dorsal attention network (DAN) to the ventral attention network (VAN), i.e., DAN→VAN, are generally associated with enhanced performance, with right intraparietal sulcus (IPS), left IPS, and right frontal eye field being the main sources of behavior-enhancing influences. Second, stronger Granger causal influences from VAN to DAN, i.e., VAN→DAN, are generally associated with degraded performance, with right temporal-parietal junction being the main sources of behavior-degrading influences. These results support the hypothesis that signals from DAN to VAN suppress and filter out unimportant distracter information, whereas signals from VAN to DAN break the attentional set maintained by the dorsal attention network to enable attentional reorienting.

摘要

损伤和功能脑成像研究表明,存在两个解剖上非重叠的注意力网络。背侧额顶网络控制目标导向的自上而下的注意力部署;腹侧额顶网络介导受刺激驱动的自下而上的注意力重新定向。这两个网络之间的相互作用及其功能意义在过去已经被考虑过,但没有进行直接的测试。我们通过记录人类受试者执行逐次提示视觉空间注意力任务的 fMRI 数据来解决这个问题,在这个任务中,受试者必须对注意域中的目标刺激做出反应,忽略未注意域中的所有刺激。通过将感兴趣区域之间的 Granger 因果影响与行为表现相关联,我们报告了两个主要结果。首先,来自背侧注意网络(DAN)到腹侧注意网络(VAN)的更强的 Granger 因果影响,即 DAN→VAN,通常与增强的表现相关联,右侧顶内沟(IPS)、左侧 IPS 和右侧额眼区是增强行为影响的主要来源。其次,来自 VAN 到 DAN 的更强的 Granger 因果影响,即 VAN→DAN,通常与表现下降相关联,右侧颞顶交界处是降低行为影响的主要来源。这些结果支持了这样一种假设,即来自 DAN 的信号抑制和过滤掉不重要的分心信息,而来自 VAN 的信号打破由背侧注意网络维持的注意力定势,以实现注意力重新定向。

相似文献

1
Causal interactions in attention networks predict behavioral performance.
J Neurosci. 2012 Jan 25;32(4):1284-92. doi: 10.1523/JNEUROSCI.2817-11.2012.
2
Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
J Neurosci. 2018 Mar 7;38(10):2495-2504. doi: 10.1523/JNEUROSCI.2724-17.2018. Epub 2018 Feb 2.
3
Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
J Neurosci. 2012 Aug 1;32(31):10637-48. doi: 10.1523/JNEUROSCI.0414-12.2012.
4
Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study.
Epilepsy Behav. 2018 Nov;88:81-86. doi: 10.1016/j.yebeh.2018.06.045. Epub 2018 Sep 19.
6
Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems.
J Neurosci. 2015 Aug 12;35(32):11445-57. doi: 10.1523/JNEUROSCI.0939-15.2015.
7
The causal interaction within attention networks and emotion network: a fMRI study.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2388-91. doi: 10.1109/EMBC.2014.6944102.
10
Role of the dorsal attention network in distracter suppression based on features.
Cogn Neurosci. 2020 Jan;11(1-2):37-46. doi: 10.1080/17588928.2019.1683525. Epub 2019 Nov 1.

引用本文的文献

4
6
Neuroimaging evidence supporting a dual-network architecture for the control of visuospatial attention in the human brain: a mini review.
Front Hum Neurosci. 2023 Sep 28;17:1250096. doi: 10.3389/fnhum.2023.1250096. eCollection 2023.
7
Accurate localization and coactivation profiles of the frontal eye field and inferior frontal junction: an ALE and MACM fMRI meta-analysis.
Brain Struct Funct. 2023 May;228(3-4):997-1017. doi: 10.1007/s00429-023-02641-y. Epub 2023 Apr 24.
10
Identifying the neural marker of chronic sciatica using multimodal neuroimaging and machine learning analyses.
Front Neurosci. 2022 Nov 30;16:1036487. doi: 10.3389/fnins.2022.1036487. eCollection 2022.

本文引用的文献

1
Neuronal mechanisms and attentional modulation of corticothalamic α oscillations.
J Neurosci. 2011 Mar 30;31(13):4935-43. doi: 10.1523/JNEUROSCI.5580-10.2011.
2
The importance of being variable.
J Neurosci. 2011 Mar 23;31(12):4496-503. doi: 10.1523/JNEUROSCI.5641-10.2011.
3
Attentional modulation of alpha oscillations in macaque inferotemporal cortex.
J Neurosci. 2011 Jan 19;31(3):878-82. doi: 10.1523/JNEUROSCI.5295-10.2011.
4
Functional connectivity during top-down modulation of visual short-term memory representations.
Neuropsychologia. 2011 May;49(6):1589-96. doi: 10.1016/j.neuropsychologia.2010.12.043. Epub 2011 Jan 15.
6
Granger causal influence predicts BOLD activity levels in the default mode network.
Hum Brain Mapp. 2011 Jan;32(1):154-61. doi: 10.1002/hbm.21065.
8
Network modelling methods for FMRI.
Neuroimage. 2011 Jan 15;54(2):875-91. doi: 10.1016/j.neuroimage.2010.08.063. Epub 2010 Sep 15.
9
The What and How of prefrontal cortical organization.
Trends Neurosci. 2010 Aug;33(8):355-61. doi: 10.1016/j.tins.2010.05.002. Epub 2010 Jun 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验