Suppr超能文献

尖晶石型锰钴氧化物与石墨烯的共价杂化作为先进的氧还原电催化剂。

Covalent hybrid of spinel manganese-cobalt oxide and graphene as advanced oxygen reduction electrocatalysts.

机构信息

Department of Chemistry, Stanford University, Stanford, California 94305, USA.

出版信息

J Am Chem Soc. 2012 Feb 22;134(7):3517-23. doi: 10.1021/ja210924t. Epub 2012 Feb 8.

Abstract

Through direct nanoparticle nucleation and growth on nitrogen doped, reduced graphene oxide sheets and cation substitution of spinel Co(3)O(4) nanoparticles, a manganese-cobalt spinel MnCo(2)O(4)/graphene hybrid was developed as a highly efficient electrocatalyst for oxygen reduction reaction (ORR) in alkaline conditions. Electrochemical and X-ray near-edge structure (XANES) investigations revealed that the nucleation and growth method for forming inorganic-nanocarbon hybrids results in covalent coupling between spinel oxide nanoparticles and N-doped reduced graphene oxide (N-rmGO) sheets. Carbon K-edge and nitrogen K-edge XANES showed strongly perturbed C-O and C-N bonding in the N-rmGO sheet, suggesting the formation of C-O-metal and C-N-metal bonds between N-doped graphene oxide and spinel oxide nanoparticles. Co L-edge and Mn L-edge XANES suggested substitution of Co(3+) sites by Mn(3+), which increased the activity of the catalytic sites in the hybrid materials, further boosting the ORR activity compared with the pure cobalt oxide hybrid. The covalently bonded hybrid afforded much greater activity and durability than the physical mixture of nanoparticles and carbon materials including N-rmGO. At the same mass loading, the MnCo(2)O(4)/N-graphene hybrid can outperform Pt/C in ORR current density at medium overpotentials with stability superior to Pt/C in alkaline solutions.

摘要

通过在氮掺杂还原氧化石墨烯片上直接进行纳米颗粒成核和生长以及尖晶石 Co(3)O(4)纳米颗粒的阳离子取代,开发了一种锰-钴尖晶石 MnCo(2)O(4)/石墨烯杂化物,作为在碱性条件下氧还原反应 (ORR) 的高效电催化剂。电化学和 X 射线近边结构 (XANES) 研究表明,形成无机-纳米碳杂化物的成核和生长方法导致尖晶石氧化物纳米颗粒与 N 掺杂还原氧化石墨烯 (N-rmGO) 片之间发生共价偶联。碳 K 边和氮 K 边 XANES 表明 N-rmGO 片上的 C-O 和 C-N 键受到强烈干扰,表明在 N 掺杂氧化石墨烯和尖晶石氧化物纳米颗粒之间形成了 C-O-金属和 C-N-金属键。Co L 边和 Mn L 边 XANES 表明 Co(3+) 位被 Mn(3+) 取代,这增加了杂化材料中催化位点的活性,与纯氧化钴杂化物相比,进一步提高了 ORR 活性。与包括 N-rmGO 在内的纳米颗粒和碳材料的物理混合物相比,共价键合的杂化物具有更高的活性和耐久性。在相同的质量负载下,MnCo(2)O(4)/N-石墨烯杂化物在中等过电势下的 ORR 电流密度优于 Pt/C,并且在碱性溶液中的稳定性优于 Pt/C。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验