Elberling Claus, Don Manuel
William Demant Holding A/S, Kangebakken 9, DK-2765 Smørum, Denmark.
J Acoust Soc Am. 2010 Nov;128(5):2955-64. doi: 10.1121/1.3489111.
A recent study evaluates auditory brainstem responses (ABRs) evoked by chirps of different durations (sweeping rates) [Elberling et al. (2010). J. Acoust. Soc. Am. 128, 215-223]. The study demonstrates that shorter chirps are most efficient at higher levels of stimulation whereas longer chirps are most efficient at lower levels. Mechanisms other than the traveling wave delay, in particular, upward spread of excitation and changes in cochlear-neural delay with level, are suggested to be responsible for these findings. As a consequence, delay models based on estimates of the traveling wave delay are insufficient for the design of chirp stimuli, and another delay model based on a direct approach is therefore proposed. The direct approach uses ABR-latencies from normal-hearing subjects in response to octave-band chirps over a wide range of levels. The octave-band chirps are constructed by decomposing a broad-band chirp, and constitute a subset of the chirp. The delay compensations of the proposed model are similar to those found in the previous experimental study, which thus verifies the results of the proposed model.
最近的一项研究评估了由不同持续时间(扫频速率)的啁啾声诱发的听觉脑干反应(ABR)[埃尔伯林等人(2010年)。《美国声学学会杂志》128卷,215 - 223页]。该研究表明,较短的啁啾声在较高刺激水平时效率最高,而较长的啁啾声在较低刺激水平时效率最高。除了行波延迟之外的机制,特别是兴奋的向上扩散以及随着刺激水平变化的耳蜗 - 神经延迟,被认为是这些发现的原因。因此,基于行波延迟估计的延迟模型不足以用于设计啁啾刺激,所以提出了另一种基于直接方法的延迟模型。该直接方法使用听力正常受试者在广泛刺激水平下对倍频程带啁啾声的ABR潜伏期。倍频程带啁啾声通过分解宽带啁啾声构建而成,并且构成啁啾声的一个子集。所提出模型的延迟补偿与先前实验研究中的结果相似,从而验证了所提出模型的结果。