Department of Ophthalmology, Hanyang University College of Medicine, Seoul, Korea.
Ophthalmology. 2012 May;119(5):1017-23. doi: 10.1016/j.ophtha.2011.10.029. Epub 2012 Jan 26.
To report a 6 radial scan protocol, which simply generates a topographic map of choroidal thickness and volume on a commercial spectral-domain optical coherence tomography (SD-OCT) device. We analyzed the features of the resulting choroidal maps in healthy eyes.
Prospective, noncomparative case series.
Eighty eyes from 40 healthy volunteers who visited the healthcare clinic of Hanyang University Hospital from December 2010 to February 2011.
All participants underwent a 6 radial scanning protocol using an SD-OCT device. In a single session, the device produces 6 high-resolution averaging B-scan images. For segmentation of the choroid layer, the reference lines of the retinal boundary (internal limiting membrane-retinal pigment epithelium) were adjusted to the choroidal boundary (retinal pigment epithelium-choroid/sclera junction) in each of the 6 radial B-scans. A topographic map of choroidal thickness and volume was automatically generated by built-in software according to the Early Treatment Diabetic Retinopathy Study (ETDRS) layout. A statistical analysis was conducted to compare the choroidal thickness and volume measurements for each ETDRS subfield.
An ETDRS-style topographic map of choroidal thickness and volume.
The mean time required for segmentation adjustment was 167.4±15.8 seconds. The mean choroidal thickness of all ETDRS subfields was 285.9±53.0 μm, and the mean total choroidal volume of the entire ETDRS area was 7.72±1.2 mm(3). The nasal outer macula area was significantly smaller than any other ETDRS subfield (P<0.05) except for the adjacent superior and inferior outer macula subfields. Refractive error was correlated with choroidal thickness in all ETDRS subfields. Age was also correlated with choroidal thickness for almost all of the ETDRS subfields except for the temporal inner, nasal outer, and temporal outer macula areas. The total choroidal volume was correlated with the refractive error and age.
A 6 radial scan protocol, using a commercial SD-OCT device, enables the production of reliable choroidal thickness and volume maps with an ETDRS layout. By using this protocol, more comprehensive choroidal evaluation is possible in clinical practice or research.
报告一种 6 条放射状扫描方案,该方案可在商用谱域光学相干断层扫描(SD-OCT)设备上生成脉络膜厚度和体积的地形图。我们分析了健康眼的脉络膜图的特征。
前瞻性、非对照病例系列。
2010 年 12 月至 2011 年 2 月期间,40 名健康志愿者的 80 只眼,他们访问了汉阳大学医院的医疗诊所。
所有参与者均使用 SD-OCT 设备进行 6 条放射状扫描方案。在单个会话中,设备产生 6 个高分辨率平均 B 扫描图像。为了对脉络膜层进行分割,将视网膜边界(内界膜-视网膜色素上皮)的参考线调整为 6 条放射状 B 扫描中的每条中的脉络膜边界(视网膜色素上皮-脉络膜/巩膜交界处)。根据早期糖尿病视网膜病变治疗研究(ETDRS)的布局,内置软件自动生成脉络膜厚度和体积的地形图。进行了统计学分析以比较每个 ETDRS 亚区的脉络膜厚度和体积测量值。
ETDRS 风格的脉络膜厚度和体积地形图。
分割调整所需的平均时间为 167.4±15.8 秒。所有 ETDRS 亚区的平均脉络膜厚度为 285.9±53.0μm,整个 ETDRS 区域的平均总脉络膜体积为 7.72±1.2mm³。鼻外侧黄斑区明显小于其他任何 ETDRS 亚区(P<0.05),除了相邻的上、下外侧黄斑亚区。屈光不正与所有 ETDRS 亚区的脉络膜厚度相关。年龄也与除颞内侧、鼻外侧和颞外侧黄斑区以外的几乎所有 ETDRS 亚区的脉络膜厚度相关。总脉络膜体积与屈光不正和年龄相关。
使用商用 SD-OCT 设备的 6 条放射状扫描方案可生成具有 ETDRS 布局的可靠脉络膜厚度和体积图。通过使用该方案,可以在临床实践或研究中进行更全面的脉络膜评估。