Suppr超能文献

健康受试者脉络膜体积随年龄、眼轴长度和性别变化的三维分析。

Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis.

机构信息

Department of Ophthalmology, Jacobs Retina Center at Shiley Eye Center, University of California San Diego, La Jolla, California 92037, USA.

出版信息

Ophthalmology. 2012 Dec;119(12):2572-8. doi: 10.1016/j.ophtha.2012.06.065. Epub 2012 Aug 24.

Abstract

PURPOSE

To demonstrate the 3-dimensional choroidal volume distribution in healthy subjects using enhanced depth imaging (EDI) spectral-domain optical coherence tomography (SD-OCT) and to evaluate its association with age, sex, and axial length.

DESIGN

Retrospective case series.

PARTICIPANTS

A total of 176 eyes from 114 subjects with no retinal or choroidal disease.

METHODS

The EDI SD-OCT imaging studies of healthy patients who had undergone a 31-raster scanning protocol on a commercial SD-OCT device were reviewed. Manual segmentation of the choroid was performed by 2 retinal specialists. A macular choroidal volume map and 3-dimensional topography were automatically created by the built-in software of the device. Mean choroidal volume was calculated for each Early Treatment Diabetic Retinopathy Study (ETDRS) subfield. Regression analyses were used to evaluate the correlation between macular choroidal volume and age, sex, and axial length.

MAIN OUTCOME MEASURES

Three-dimensional topography and ETDRS-style volume map of the choroid.

RESULTS

Three-dimensional topography of the choroid and volume map was obtained in all cases. The mean choroidal volume was 0.228 ± 0.077 mm(3) for the center ring and 7.374 ± 2.181 mm(3) for the total ETDRS grid. The nasal quadrant showed the lowest choroidal volume, and the superior quadrant showed the highest choroidal volume. The temporal and inferior quadrants did not show different choroidal volume values. Choroidal volume in all the EDTRS rings was significantly correlated with axial length after adjustment for age (P < 0.0001), age after adjustment for axial length (P < 0.0001), and sex after adjustment for axial length (P < 0.05). Choroidal volume decreases by 0.54 mm(3) (7.32%) for every decade and by 0.56 mm(3) (7.59%) for every millimeter of axial length. Male subjects have a 7.37% greater choroidal volume compared with that of female subjects.

CONCLUSIONS

Enhanced depth imaging SD-OCT is a noninvasive and well-tolerated procedure with an excellent ability to visualize 3-dimensional topography of the choroid and to measure choroidal volume at the posterior pole using manual segmentation. Age and axial length are inversely correlated with choroidal volume, most likely leading to changes in retinal metabolic support in elderly, highly myopic patients. Sexual differences should be considered when interpreting an EDI SD-OCT scan of the choroid.

FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

摘要

目的

使用增强深度成像(EDI)谱域光学相干断层扫描(SD-OCT)演示健康受试者的脉络膜 3 维体积分布,并评估其与年龄、性别和眼轴的关系。

设计

回顾性病例系列。

参与者

共 114 例无视网膜或脉络膜疾病的 176 只眼。

方法

对接受商业 SD-OCT 设备 31 个光栅扫描方案的健康患者的 EDI SD-OCT 成像研究进行了回顾。由 2 名视网膜专家手动对脉络膜进行分段。设备的内置软件自动创建黄斑脉络膜体积图和 3 维地形图。为每个早期糖尿病视网膜病变研究(ETDRS)亚区计算平均脉络膜体积。回归分析用于评估脉络膜黄斑体积与年龄、性别和眼轴的相关性。

主要观察指标

脉络膜的 3 维地形图和 ETDRS 式体积图。

结果

所有病例均获得脉络膜 3 维地形图和体积图。中心环的平均脉络膜体积为 0.228 ± 0.077mm³,总 ETDRS 网格的平均脉络膜体积为 7.374 ± 2.181mm³。鼻象限的脉络膜体积最低,上象限的脉络膜体积最高。颞下象限的脉络膜体积值没有差异。所有 ETDRS 环的脉络膜体积与眼轴相关,在调整年龄后(P<0.0001)、调整眼轴后(P<0.0001)和调整眼轴后(P<0.05)与年龄相关。脉络膜体积每 10 年减少 0.54mm³(7.32%),每增加 1mm 眼轴长度减少 0.56mm³(7.59%)。男性受试者的脉络膜体积比女性受试者大 7.37%。

结论

增强深度成像 SD-OCT 是一种非侵入性、耐受性良好的方法,具有极好的可视化后极 3 维脉络膜地形图和手动分段测量脉络膜体积的能力。年龄和眼轴与脉络膜体积呈负相关,这可能导致老年高度近视患者视网膜代谢支持的变化。在解释 EDI SD-OCT 脉络膜扫描时应考虑性别的差异。

财务披露

作者没有与本文讨论的任何材料有关的专有或商业利益。

相似文献

1
Choroidal volume variations with age, axial length, and sex in healthy subjects: a three-dimensional analysis.
Ophthalmology. 2012 Dec;119(12):2572-8. doi: 10.1016/j.ophtha.2012.06.065. Epub 2012 Aug 24.
2
Choroidal thickness and volume mapping by a six radial scan protocol on spectral-domain optical coherence tomography.
Ophthalmology. 2012 May;119(5):1017-23. doi: 10.1016/j.ophtha.2011.10.029. Epub 2012 Jan 26.
3
Choroidal Differences between Spectral and Swept-source Domain Technologies.
Curr Eye Res. 2021 Feb;46(2):239-247. doi: 10.1080/02713683.2020.1795883. Epub 2020 Jul 30.
4
Choroidal thickness and volume in healthy young white adults and the relationships between them and axial length, ammetropy and sex.
Am J Ophthalmol. 2014 Sep;158(3):574-83.e1. doi: 10.1016/j.ajo.2014.05.035. Epub 2014 Jun 5.
7
Influence of scanning density on macular choroidal volume measurement using spectral-domain optical coherence tomography.
Graefes Arch Clin Exp Ophthalmol. 2013 May;251(5):1303-9. doi: 10.1007/s00417-012-2188-0. Epub 2012 Nov 10.
8
Peripapillary choroidal thickness assessed using automated choroidal segmentation software in an Asian population.
Br J Ophthalmol. 2015 Jul;99(7):920-6. doi: 10.1136/bjophthalmol-2014-306152. Epub 2015 Jan 21.
9
Circadian macular volume changes in the healthy human choroid.
Am J Ophthalmol. 2015 Feb;159(2):365-71.e2. doi: 10.1016/j.ajo.2014.11.002. Epub 2014 Nov 6.
10
Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography.
Invest Ophthalmol Vis Sci. 2011 Jul 1;52(8):4971-8. doi: 10.1167/iovs.11-7729.

引用本文的文献

1
Ocular changes as potential biomarkers for early diagnosis of Alzheimer's disease.
Alzheimers Dement. 2025 Aug;21(8):e70476. doi: 10.1002/alz.70476.
2
Headache in the paediatric population: the role of the ophthalmologist.
Front Pediatr. 2025 Jun 12;13:1547750. doi: 10.3389/fped.2025.1547750. eCollection 2025.
4
Profiles of Choroidal Vortex Vein Drainage System Using Ultra-Widefield OCT Angiography in a Chinese Population.
Ophthalmol Sci. 2025 Mar 15;5(4):100768. doi: 10.1016/j.xops.2025.100768. eCollection 2025 Jul-Aug.
5
Genetic influence on choroidal vascularity index.
PLoS One. 2025 Jan 30;20(1):e0318369. doi: 10.1371/journal.pone.0318369. eCollection 2025.
6
Aging in Ocular Blood Vessels: Molecular Insights and the Role of Oxidative Stress.
Biomedicines. 2024 Apr 8;12(4):817. doi: 10.3390/biomedicines12040817.
8
Choroidal thickness and effect of sex and age in Africans.
Ann Afr Med. 2023 Oct-Dec;22(4):489-496. doi: 10.4103/aam.aam_184_22.

本文引用的文献

2
Choroidal thickness and volume mapping by a six radial scan protocol on spectral-domain optical coherence tomography.
Ophthalmology. 2012 May;119(5):1017-23. doi: 10.1016/j.ophtha.2011.10.029. Epub 2012 Jan 26.
3
Choroidal thickness in healthy Chinese subjects.
Invest Ophthalmol Vis Sci. 2011 Dec 20;52(13):9555-60. doi: 10.1167/iovs.11-8076.
4
Spatial distribution of posterior pole choroidal thickness by spectral domain optical coherence tomography.
Invest Ophthalmol Vis Sci. 2011 Sep 1;52(9):7019-26. doi: 10.1167/iovs.11-8046.
5
Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography.
Invest Ophthalmol Vis Sci. 2011 Jul 1;52(8):4971-8. doi: 10.1167/iovs.11-7729.
9
Photodynamic therapy for variant central serous chorioretinopathy: efficacy and side effects.
Ophthalmologica. 2011;225(4):207-10. doi: 10.1159/000324050. Epub 2011 Feb 12.
10
Subfoveal retinal and choroidal thickness after verteporfin photodynamic therapy for polypoidal choroidal vasculopathy.
Am J Ophthalmol. 2011 Apr;151(4):594-603.e1. doi: 10.1016/j.ajo.2010.10.030. Epub 2011 Feb 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验