Suppr超能文献

建立模型以模拟橄榄耳蜗反射对强噪声中纯音听觉神经反应的掩蔽效应。

Modeling the anti-masking effects of the olivocochlear reflex in auditory nerve responses to tones in sustained noise.

机构信息

Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.

出版信息

J Assoc Res Otolaryngol. 2012 Apr;13(2):219-35. doi: 10.1007/s10162-011-0310-3.

Abstract

The medial olivocochlear reflex (MOCR) has been hypothesized to provide benefit for listening in noise. Strong physiological support for an anti-masking role for the MOCR has come from the observation that auditory nerve (AN) fibers exhibit reduced firing to sustained noise and increased sensitivity to tones when the MOCR is elicited. The present study extended a well-established computational model for normal-hearing and hearing-impaired AN responses to demonstrate that these anti-masking effects can be accounted for by reducing outer hair cell (OHC) gain, which is a primary effect of the MOCR. Tone responses in noise were examined systematically as a function of tone level, noise level, and OHC gain. Signal detection theory was used to predict detection and discrimination for different spontaneous rate fiber groups. Decreasing OHC gain decreased the sustained noise response and increased maximum discharge rate to the tone, thus modeling the ability of the MOCR to decompress AN fiber rate-level functions. Comparing the present modeling results with previous data from AN fibers in decerebrate cats suggests that the ipsilateral masking noise used in the physiological study may have elicited up to 20 dB of OHC gain reduction in addition to that inferred from the contralateral noise effects. Reducing OHC gain in the model also extended the dynamic range for discrimination over a wide range of background noise levels. For each masker level, an optimal OHC gain reduction was predicted (i.e., where maximum discrimination was achieved without increased detection threshold). These optimal gain reductions increased with masker level and were physiologically realistic. Thus, reducing OHC gain can improve tone-in-noise discrimination even though it may produce a “hearing loss” in quiet. Combining MOCR effects with the sensorineural hearing loss effects already captured by this computational AN model will be beneficial for exploring the implications of their interaction for the difficulties hearing-impaired listeners have in noisy situations.

摘要

中橄榄耳蜗反射(MOCR)被假设为在噪声环境中提供聆听的益处。MOCR 具有抗掩蔽作用的强有力的生理学支持来自于这样的观察,即听觉神经(AN)纤维对持续噪声的放电减少,并且对当 MOCR 被引发时的音调的敏感性增加。本研究扩展了一个用于正常听力和听力受损的 AN 反应的既定计算模型,以证明这些抗掩蔽效应可以通过降低外毛细胞(OHC)增益来解释,这是 MOCR 的主要作用。作为音调水平、噪声水平和 OHC 增益的函数,系统地检查了噪声中的音调响应。使用信号检测理论来预测不同自发率纤维组的检测和辨别。降低 OHC 增益会降低持续噪声的反应,并增加音调的最大放电率,从而模拟 MOCR 对 AN 纤维率级函数的解压能力。将本研究的建模结果与去大脑猫中的 AN 纤维的先前数据进行比较表明,在生理研究中使用的同侧掩蔽噪声除了从对侧噪声效应推断出的增益减少之外,可能还引发了多达 20 dB 的 OHC 增益减少。在模型中降低 OHC 增益还扩展了在广泛的背景噪声水平范围内的辨别动态范围。对于每个掩蔽器水平,预测了最佳的 OHC 增益减少(即,在不增加检测阈值的情况下实现最大辨别)。这些最佳增益减少随着掩蔽器水平的增加而增加,并且是生理现实的。因此,降低 OHC 增益可以改善噪声中的音调辨别能力,即使它可能在安静环境中产生“听力损失”。将 MOCR 效应与该计算 AN 模型已经捕获的感觉神经性听力损失效应结合起来,将有利于探索它们相互作用对听力受损者在嘈杂环境中遇到困难的影响。

相似文献

1
Modeling the anti-masking effects of the olivocochlear reflex in auditory nerve responses to tones in sustained noise.
J Assoc Res Otolaryngol. 2012 Apr;13(2):219-35. doi: 10.1007/s10162-011-0310-3.
2
Modeling the time-varying and level-dependent effects of the medial olivocochlear reflex in auditory nerve responses.
J Assoc Res Otolaryngol. 2014 Apr;15(2):159-73. doi: 10.1007/s10162-013-0430-z. Epub 2013 Dec 5.
4
5
Non-tip auditory-nerve responses that are suppressed by low-frequency bias tones originate from reticular lamina motion.
Hear Res. 2018 Feb;358:1-9. doi: 10.1016/j.heares.2017.12.008. Epub 2017 Dec 14.
6
Increased medial olivocochlear reflex strength in normal-hearing, noise-exposed humans.
PLoS One. 2017 Sep 8;12(9):e0184036. doi: 10.1371/journal.pone.0184036. eCollection 2017.
7
Low-frequency bias tone suppression of auditory-nerve responses to low-level clicks and tones.
Hear Res. 2016 Nov;341:66-78. doi: 10.1016/j.heares.2016.08.007. Epub 2016 Aug 29.
8
Otoacoustic-emission-based medial-olivocochlear reflex assays for humans.
J Acoust Soc Am. 2014 Nov;136(5):2697-713. doi: 10.1121/1.4896745.
10
Enhancement of the Medial Olivocochlear System Prevents Hidden Hearing Loss.
J Neurosci. 2018 Aug 22;38(34):7440-7451. doi: 10.1523/JNEUROSCI.0363-18.2018. Epub 2018 Jul 20.

引用本文的文献

1
Speech Perception in Noise and Medial Olivocochlear Reflex: Effects of Age, Speech Stimulus, and Response-Related Variables.
J Assoc Res Otolaryngol. 2023 Dec;24(6):619-631. doi: 10.1007/s10162-023-00919-w. Epub 2023 Dec 11.
3
Understanding degraded speech leads to perceptual gating of a brainstem reflex in human listeners.
PLoS Biol. 2021 Oct 20;19(10):e3001439. doi: 10.1371/journal.pbio.3001439. eCollection 2021 Oct.
5
The role of the medial olivocochlear reflex in psychophysical masking and intensity resolution in humans: a review.
J Neurophysiol. 2021 Jun 1;125(6):2279-2308. doi: 10.1152/jn.00672.2020. Epub 2021 Apr 28.
6
Deep Neural Network Model of Hearing-Impaired Speech-in-Noise Perception.
Front Neurosci. 2020 Dec 15;14:588448. doi: 10.3389/fnins.2020.588448. eCollection 2020.
7
Modeling the effects of medial olivocochlear efferent stimulation at the level of the inferior colliculus.
Exp Brain Res. 2019 Jun;237(6):1479-1491. doi: 10.1007/s00221-019-05511-4. Epub 2019 Mar 22.
9
Olivocochlear Efferents in Animals and Humans: From Anatomy to Clinical Relevance.
Front Neurol. 2018 Mar 26;9:197. doi: 10.3389/fneur.2018.00197. eCollection 2018.
10
Modeling the level-dependent changes of concurrent vowel scores.
J Acoust Soc Am. 2018 Jan;143(1):440. doi: 10.1121/1.5021330.

本文引用的文献

1
Evaluating adaptation and olivocochlear efferent feedback as potential explanations of psychophysical overshoot.
J Assoc Res Otolaryngol. 2011 Jun;12(3):345-60. doi: 10.1007/s10162-011-0256-5. Epub 2011 Jan 26.
2
Power-law dynamics in an auditory-nerve model can account for neural adaptation to sound-level statistics.
J Neurosci. 2010 Aug 4;30(31):10380-90. doi: 10.1523/JNEUROSCI.0647-10.2010.
5
Dynamic range adaptation to sound level statistics in the auditory nerve.
J Neurosci. 2009 Nov 4;29(44):13797-808. doi: 10.1523/JNEUROSCI.5610-08.2009.
6
Human medial olivocochlear reflex: effects as functions of contralateral, ipsilateral, and bilateral elicitor bandwidths.
J Assoc Res Otolaryngol. 2009 Sep;10(3):459-70. doi: 10.1007/s10162-009-0163-1. Epub 2009 Mar 5.
7
A computer model of medial efferent suppression in the mammalian auditory system.
J Acoust Soc Am. 2007 Dec;122(6):3519-26. doi: 10.1121/1.2799914.
9
Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans.
Ear Hear. 2006 Dec;27(6):589-607. doi: 10.1097/01.aud.0000240507.83072.e7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验