Aragón Institute of Engineering Research, Universidad de Zaragoza, Zaragoza, Spain.
IEEE Trans Biomed Eng. 2012 Apr;59(4):1155-61. doi: 10.1109/TBME.2012.2185495. Epub 2012 Jan 24.
Atherosclerotic cardiovascular disease results in millions of sudden deaths annually, and coronary artery disease accounts for the majority of this toll. Plaque rupture plays main role in the majority of acute coronary syndromes. Rupture has been usually associated with stress concentrations, which are determined mainly by tissue properties and plaque geometry. The aim of this study is develop a tool, using machine learning techniques to assist the clinical professionals on decisions of the vulnerability of the atheroma plaque. In practice, the main drawbacks of 3-D finite element analysis to predict the vulnerability risk are the huge main memories required and the long computation times. Therefore, it is essential to use these methods which are faster and more efficient. This paper discusses two potential applications of computational technologies, artificial neural networks and support vector machines, used to assess the role of maximum principal stress in a coronary vessel with atheroma plaque as a function of the main geometrical features in order to quantify the vulnerability risk.
动脉粥样硬化性心血管疾病导致每年数百万人猝死,而冠状动脉疾病是造成这种高死亡率的主要原因。斑块破裂在大多数急性冠状动脉综合征中起着主要作用。破裂通常与应力集中有关,而这些应力集中主要由组织特性和斑块几何形状决定。本研究的目的是开发一种工具,利用机器学习技术来辅助临床专业人员对动脉粥样硬化斑块易损性的决策。在实践中,使用三维有限元分析来预测易损性风险的主要缺点是需要大量的主内存和较长的计算时间。因此,使用这些更快、更有效的方法是至关重要的。本文讨论了两种计算技术的潜在应用,即人工神经网络和支持向量机,用于评估冠状动脉粥样斑块中最大主应力的作用,作为量化易损性风险的主要几何特征的函数。