Suppr超能文献

一种通用的贝叶斯方法用于 MEG 源重建,同时考虑到了导联场不确定性。

A general Bayesian treatment for MEG source reconstruction incorporating lead field uncertainty.

机构信息

Mechatronics School, Bl. M8-108 Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia.

出版信息

Neuroimage. 2012 Apr 2;60(2):1194-204. doi: 10.1016/j.neuroimage.2012.01.077. Epub 2012 Jan 25.

Abstract

There is uncertainty introduced when a cortical surface based model derived from an anatomical MRI is used to reconstruct neural activity with MEG data. This is a specific case of a problem with uncertainty in parameters on which M/EEG lead fields depend non-linearly. Here we present a general mathematical treatment of any such problem with a particular focus on co-registration. We use a Metropolis search followed by Bayesian Model Averaging over multiple sparse prior source inversions with different headlocation/orientation parameters. Based on MEG data alone we can locate the cortex to within 4mm at empirically realistic signal to noise ratios. We also show that this process gives improved posterior distributions on the estimated current distributions, and can be extended to make inference on the locations of local maxima by providing confidence intervals for each source.

摘要

当使用基于皮质表面的模型从解剖 MRI 重建 MEG 数据中的神经活动时,会引入不确定性。这是 M/EEG 导联场依赖非线性参数不确定性的一个具体问题。在这里,我们针对特定的配准问题,提出了一种一般的数学处理方法。我们使用 Metropolis 搜索,然后对多个具有不同头位/方位参数的稀疏先验源反演进行贝叶斯模型平均。仅基于 MEG 数据,我们就可以在具有实际可实现信噪比的情况下将皮质定位在 4mm 以内。我们还表明,该过程可以改善对估计电流分布的后验分布,并可以通过为每个源提供置信区间来扩展到对局部最大值位置进行推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9bf/3334829/12f5cd645a99/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验