Mechatronics School, Bl. M8-108 Facultad de Minas, Universidad Nacional de Colombia, Medellín, Colombia.
Neuroimage. 2012 Apr 2;60(2):1194-204. doi: 10.1016/j.neuroimage.2012.01.077. Epub 2012 Jan 25.
There is uncertainty introduced when a cortical surface based model derived from an anatomical MRI is used to reconstruct neural activity with MEG data. This is a specific case of a problem with uncertainty in parameters on which M/EEG lead fields depend non-linearly. Here we present a general mathematical treatment of any such problem with a particular focus on co-registration. We use a Metropolis search followed by Bayesian Model Averaging over multiple sparse prior source inversions with different headlocation/orientation parameters. Based on MEG data alone we can locate the cortex to within 4mm at empirically realistic signal to noise ratios. We also show that this process gives improved posterior distributions on the estimated current distributions, and can be extended to make inference on the locations of local maxima by providing confidence intervals for each source.
当使用基于皮质表面的模型从解剖 MRI 重建 MEG 数据中的神经活动时,会引入不确定性。这是 M/EEG 导联场依赖非线性参数不确定性的一个具体问题。在这里,我们针对特定的配准问题,提出了一种一般的数学处理方法。我们使用 Metropolis 搜索,然后对多个具有不同头位/方位参数的稀疏先验源反演进行贝叶斯模型平均。仅基于 MEG 数据,我们就可以在具有实际可实现信噪比的情况下将皮质定位在 4mm 以内。我们还表明,该过程可以改善对估计电流分布的后验分布,并可以通过为每个源提供置信区间来扩展到对局部最大值位置进行推断。