Departamento Física de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain.
PLoS One. 2012;7(1):e30204. doi: 10.1371/journal.pone.0030204. Epub 2012 Jan 25.
Structural Biology (SB) techniques are particularly successful in solving virus structures. Taking advantage of the symmetries, a heavy averaging on the data of a large number of specimens, results in an accurate determination of the structure of the sample. However, these techniques do not provide true single molecule information of viruses in physiological conditions. To answer many fundamental questions about the quickly expanding physical virology it is important to develop techniques with the capability to reach nanometer scale resolution on both structure and physical properties of individual molecules in physiological conditions. Atomic force microscopy (AFM) fulfills these requirements providing images of individual virus particles under physiological conditions, along with the characterization of a variety of properties including local adhesion and elasticity. Using conventional AFM modes is easy to obtain molecular resolved images on flat samples, such as the purple membrane, or large viruses as the Giant Mimivirus. On the contrary, small virus particles (25-50 nm) cannot be easily imaged. In this work we present Frequency Modulation atomic force microscopy (FM-AFM) working in physiological conditions as an accurate and powerful technique to study virus particles. Our interpretation of the so called "dissipation channel" in terms of mechanical properties allows us to provide maps where the local stiffness of the virus particles are resolved with nanometer resolution. FM-AFM can be considered as a non invasive technique since, as we demonstrate in our experiments, we are able to sense forces down to 20 pN. The methodology reported here is of general interest since it can be applied to a large number of biological samples. In particular, the importance of mechanical interactions is a hot topic in different aspects of biotechnology ranging from protein folding to stem cells differentiation where conventional AFM modes are already being used.
结构生物学(SB)技术在解决病毒结构方面特别成功。利用对称性,对大量样本数据进行大量平均,可以准确确定样品的结构。然而,这些技术不能提供病毒在生理条件下的真实单分子信息。为了回答关于快速发展的物理病毒学的许多基本问题,开发能够在生理条件下达到单个分子结构和物理特性纳米级分辨率的技术非常重要。原子力显微镜(AFM)满足这些要求,可在生理条件下提供单个病毒颗粒的图像,以及对包括局部粘附和弹性在内的各种特性的表征。使用传统的 AFM 模式,很容易在平样品上获得分子分辨图像,例如紫色膜或像巨型 mimivirus 这样的大型病毒。相反,小病毒颗粒(25-50nm)则不易成像。在这项工作中,我们展示了在生理条件下工作的调频原子力显微镜(FM-AFM)作为研究病毒颗粒的一种准确而强大的技术。我们根据机械特性对所谓的“耗散通道”的解释,使我们能够提供局部病毒颗粒刚度以纳米分辨率分辨的图谱。FM-AFM 可以被认为是一种非侵入性技术,因为正如我们在实验中所证明的,我们能够感应低至 20pN 的力。这里报道的方法具有普遍的意义,因为它可以应用于大量的生物样本。特别是,机械相互作用的重要性是生物技术的不同方面的热门话题,从蛋白质折叠到干细胞分化,传统的 AFM 模式已经在这些方面得到了应用。