Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, United States.
Biochemistry. 2012 Feb 28;51(8):1577-85. doi: 10.1021/bi201897t. Epub 2012 Feb 13.
The arginine-dependent extreme acid resistance system helps enteric bacteria survive the harsh gastric environment. At the center of this multiprotein system is an arginine-agmatine antiporter, AdiC. To maintain cytoplasmic pH, AdiC imports arginine and exports its decarboxylated product, agmatine, resulting in a net extrusion of one "virtual proton" in each turnover. The random orientation of AdiC in reconstituted liposomes throws up an obstacle to quantifying its transport mechanism. To overcome this problem, we introduced a mutation, S26C, near the substrate-binding site. This mutant exhibits substrate recognition and pH-dependent activity similar to those of the wild-type protein but loses function completely upon reaction with thiol reagents. The membrane-impermeant MTSES reagent can then be used as a cleanly sided inhibitor to silence those S26C-AdiC proteins whose extracellular portion projects from the external side of the liposome. Alternatively, the membrane-permeant MTSEA and membrane-impermeant reducing reagent, TCEP, can be used together to inhibit proteins in the opposite orientation. This approach allows steady-state kinetic analysis of AdiC in a sided fashion. Arginine and agmatine have similar Michaelis-Menten parameters for both sides of the protein, while the extracellular side selects arginine over argininamide, a mimic of the carboxylate-protonated form of arginine, more effectively than does the cytoplasmic side. Moreover, the two sides of AdiC have different pH sensitivities. AdiC activity increases to a plateau at pH 4 as the extracellular side is acidified, while the cytoplasmic side shows an optimal pH of 5.5, with further acidification inhibiting transport. This oriented system allows more precise analysis of AdiC-mediated substrate transport than has been previously available and permits comparison to the situation experienced by the bacterial membrane under acid stress.
精氨酸依赖的极端耐酸系统帮助肠道细菌在恶劣的胃环境中存活。在这个多蛋白系统的中心是一种精氨酸-胍丁胺反向转运体,AdiC。为了维持细胞质 pH 值,AdiC 导入精氨酸并输出其脱羧产物胍丁胺,导致每个循环净排出一个“虚拟质子”。在重组脂质体中,AdiC 的随机取向给定量其转运机制带来了障碍。为了克服这个问题,我们引入了一个位于底物结合位点附近的突变,S26C。该突变体表现出与野生型蛋白相似的底物识别和 pH 依赖性活性,但在与巯基试剂反应时完全失去功能。然后,非膜通透的 MTSES 试剂可作为一种清洁的侧抑制剂,沉默那些从脂质体外部突出的细胞外部分的 S26C-AdiC 蛋白。或者,膜通透的 MTSEA 和非膜通透的还原试剂 TCEP 可以一起使用来抑制相反方向的蛋白质。这种方法允许以侧式方式对 AdiC 进行稳态动力学分析。精氨酸和胍丁胺对蛋白质的两侧都有相似的米氏常数参数,而细胞外侧比细胞质侧更有效地选择精氨酸而不是精氨酸酰胺,精氨酸酰胺是精氨酸羧酸盐-质子化形式的模拟物。此外,AdiC 的两侧具有不同的 pH 敏感性。当细胞外酸化时,AdiC 的活性在 pH 4 处增加到一个平台,而细胞质侧显示出最佳 pH 值为 5.5,进一步酸化抑制转运。这种定向系统允许对 AdiC 介导的底物转运进行更精确的分析,比以前可用的方法更精确,并允许与细菌膜在酸应激下的情况进行比较。