Suppr超能文献

脂质体中精氨酸-胍丁胺反向转运体的侧面功能。

Sided functions of an arginine-agmatine antiporter oriented in liposomes.

机构信息

Department of Biochemistry, Howard Hughes Medical Institute, Brandeis University, Waltham, Massachusetts 02454, United States.

出版信息

Biochemistry. 2012 Feb 28;51(8):1577-85. doi: 10.1021/bi201897t. Epub 2012 Feb 13.

Abstract

The arginine-dependent extreme acid resistance system helps enteric bacteria survive the harsh gastric environment. At the center of this multiprotein system is an arginine-agmatine antiporter, AdiC. To maintain cytoplasmic pH, AdiC imports arginine and exports its decarboxylated product, agmatine, resulting in a net extrusion of one "virtual proton" in each turnover. The random orientation of AdiC in reconstituted liposomes throws up an obstacle to quantifying its transport mechanism. To overcome this problem, we introduced a mutation, S26C, near the substrate-binding site. This mutant exhibits substrate recognition and pH-dependent activity similar to those of the wild-type protein but loses function completely upon reaction with thiol reagents. The membrane-impermeant MTSES reagent can then be used as a cleanly sided inhibitor to silence those S26C-AdiC proteins whose extracellular portion projects from the external side of the liposome. Alternatively, the membrane-permeant MTSEA and membrane-impermeant reducing reagent, TCEP, can be used together to inhibit proteins in the opposite orientation. This approach allows steady-state kinetic analysis of AdiC in a sided fashion. Arginine and agmatine have similar Michaelis-Menten parameters for both sides of the protein, while the extracellular side selects arginine over argininamide, a mimic of the carboxylate-protonated form of arginine, more effectively than does the cytoplasmic side. Moreover, the two sides of AdiC have different pH sensitivities. AdiC activity increases to a plateau at pH 4 as the extracellular side is acidified, while the cytoplasmic side shows an optimal pH of 5.5, with further acidification inhibiting transport. This oriented system allows more precise analysis of AdiC-mediated substrate transport than has been previously available and permits comparison to the situation experienced by the bacterial membrane under acid stress.

摘要

精氨酸依赖的极端耐酸系统帮助肠道细菌在恶劣的胃环境中存活。在这个多蛋白系统的中心是一种精氨酸-胍丁胺反向转运体,AdiC。为了维持细胞质 pH 值,AdiC 导入精氨酸并输出其脱羧产物胍丁胺,导致每个循环净排出一个“虚拟质子”。在重组脂质体中,AdiC 的随机取向给定量其转运机制带来了障碍。为了克服这个问题,我们引入了一个位于底物结合位点附近的突变,S26C。该突变体表现出与野生型蛋白相似的底物识别和 pH 依赖性活性,但在与巯基试剂反应时完全失去功能。然后,非膜通透的 MTSES 试剂可作为一种清洁的侧抑制剂,沉默那些从脂质体外部突出的细胞外部分的 S26C-AdiC 蛋白。或者,膜通透的 MTSEA 和非膜通透的还原试剂 TCEP 可以一起使用来抑制相反方向的蛋白质。这种方法允许以侧式方式对 AdiC 进行稳态动力学分析。精氨酸和胍丁胺对蛋白质的两侧都有相似的米氏常数参数,而细胞外侧比细胞质侧更有效地选择精氨酸而不是精氨酸酰胺,精氨酸酰胺是精氨酸羧酸盐-质子化形式的模拟物。此外,AdiC 的两侧具有不同的 pH 敏感性。当细胞外酸化时,AdiC 的活性在 pH 4 处增加到一个平台,而细胞质侧显示出最佳 pH 值为 5.5,进一步酸化抑制转运。这种定向系统允许对 AdiC 介导的底物转运进行更精确的分析,比以前可用的方法更精确,并允许与细菌膜在酸应激下的情况进行比较。

相似文献

1
Sided functions of an arginine-agmatine antiporter oriented in liposomes.
Biochemistry. 2012 Feb 28;51(8):1577-85. doi: 10.1021/bi201897t. Epub 2012 Feb 13.
2
Substrate selectivity in arginine-dependent acid resistance in enteric bacteria.
Proc Natl Acad Sci U S A. 2013 Apr 9;110(15):5893-7. doi: 10.1073/pnas.1301442110. Epub 2013 Mar 25.
4
Insights into the molecular basis for substrate binding and specificity of the wild-type L-arginine/agmatine antiporter AdiC.
Proc Natl Acad Sci U S A. 2016 Sep 13;113(37):10358-63. doi: 10.1073/pnas.1605442113. Epub 2016 Aug 31.
5
6
A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance.
J Biol Chem. 2007 Jan 5;282(1):176-82. doi: 10.1074/jbc.M610075200. Epub 2006 Nov 10.
7
Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12734-9. doi: 10.1073/pnas.1414093111. Epub 2014 Aug 18.
8
Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter.
J Biol Chem. 2011 Jun 3;286(22):19693-701. doi: 10.1074/jbc.M110.202085. Epub 2011 Apr 12.
9
Mechanism of substrate recognition and transport by an amino acid antiporter.
Nature. 2010 Feb 11;463(7282):828-32. doi: 10.1038/nature08741. Epub 2010 Jan 20.
10
Molecular mechanism of substrate selectivity of the arginine-agmatine Antiporter AdiC.
Sci Rep. 2018 Oct 23;8(1):15607. doi: 10.1038/s41598-018-33963-1.

引用本文的文献

1
A complete set of rate constants for a transporter's catalytic cycle.
J Gen Physiol. 2025 May 5;157(3). doi: 10.1085/jgp.202513766. Epub 2025 Feb 21.
2
Examination of conformational dynamics of AdiC transporter with fluorescence-polarization microscopy.
J Gen Physiol. 2025 May 5;157(3). doi: 10.1085/jgp.202413709. Epub 2025 Feb 20.
3
In vitro reconstitution of transition metal transporters.
J Biol Chem. 2024 Aug;300(8):107589. doi: 10.1016/j.jbc.2024.107589. Epub 2024 Jul 19.
5
Mechanisms and significance of tissue-specific MICU regulation of the mitochondrial calcium uniporter complex.
Mol Cell. 2022 Oct 6;82(19):3661-3676.e8. doi: 10.1016/j.molcel.2022.09.006.
6
Rush Hour of LATs towards Their Transport Cycle.
Membranes (Basel). 2021 Aug 8;11(8):602. doi: 10.3390/membranes11080602.
7
Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS).
Chem Rev. 2021 May 12;121(9):5289-5335. doi: 10.1021/acs.chemrev.0c00983. Epub 2021 Apr 22.
8
Function and Regulation of Acid Resistance Antiporters.
J Membr Biol. 2019 Oct;252(4-5):465-481. doi: 10.1007/s00232-019-00073-6. Epub 2019 Jun 25.
9
L amino acid transporter structure and molecular bases for the asymmetry of substrate interaction.
Nat Commun. 2019 Apr 18;10(1):1807. doi: 10.1038/s41467-019-09837-z.

本文引用的文献

1
2
Molecular basis of substrate-induced permeation by an amino acid antiporter.
Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):3935-40. doi: 10.1073/pnas.1018081108. Epub 2011 Feb 22.
3
Mechanism of substrate recognition and transport by an amino acid antiporter.
Nature. 2010 Feb 11;463(7282):828-32. doi: 10.1038/nature08741. Epub 2010 Jan 20.
4
Structure and mechanism of a Na+-independent amino acid transporter.
Science. 2009 Aug 21;325(5943):1010-4. doi: 10.1126/science.1176088. Epub 2009 Jul 16.
5
Expression and purification of recombinant arginine decarboxylase (speA) from Escherichia coli.
Mol Biol Rep. 2010 Apr;37(4):1823-9. doi: 10.1007/s11033-009-9617-0. Epub 2009 Jul 15.
6
Structure of a prokaryotic virtual proton pump at 3.2 A resolution.
Nature. 2009 Aug 20;460(7258):1040-3. doi: 10.1038/nature08201. Epub 2009 Jul 5.
7
A bacterial arginine-agmatine exchange transporter involved in extreme acid resistance.
J Biol Chem. 2007 Jan 5;282(1):176-82. doi: 10.1074/jbc.M610075200. Epub 2006 Nov 10.
8
Escherichia coli acid resistance: tales of an amateur acidophile.
Nat Rev Microbiol. 2004 Nov;2(11):898-907. doi: 10.1038/nrmicro1021.
10
Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli.
J Bacteriol. 2003 Nov;185(22):6556-61. doi: 10.1128/JB.185.22.6556-6561.2003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验