Suppr超能文献

大肠杆菌的谷氨酸和精氨酸依赖性酸抗性系统可提高细胞内pH值并逆转跨膜电位。

Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential.

作者信息

Richard Hope, Foster John W

机构信息

Department of Microbiology and Immunology, University of South Alabama College of Medicine, 307 University Blvd., Mobile, AL 36688, USA.

出版信息

J Bacteriol. 2004 Sep;186(18):6032-41. doi: 10.1128/JB.186.18.6032-6041.2004.

Abstract

Due to the acidic nature of the stomach, enteric organisms must withstand extreme acid stress for colonization and pathogenesis. Escherichia coli contains several acid resistance systems that protect cells to pH 2. One acid resistance system, acid resistance system 2 (AR2), requires extracellular glutamate, while another (AR3) requires extracellular arginine. Little is known about how these systems protect cells from acid stress. AR2 and AR3 are thought to consume intracellular protons through amino acid decarboxylation. Antiport mechanisms then exchange decarboxylation products for new amino acid substrates. This form of proton consumption could maintain an internal pH (pHi) conducive to cell survival. The model was tested by estimating the pHi and transmembrane potential (DeltaPsi) of cells acid stressed at pH 2.5. During acid challenge, glutamate- and arginine-dependent systems elevated pHi from 3.6 to 4.2 and 4.7, respectively. However, when pHi was manipulated to 4.0 in the presence or absence of glutamate, only cultures challenged in the presence of glutamate survived, indicating that a physiological parameter aside from pHi was also important. Measurements of DeltaPsi indicated that amino acid-dependent acid resistance systems help convert membrane potential from an inside negative to inside positive charge, an established acidophile strategy used to survive extreme acidic environments. Thus, reversing DeltaPsi may be a more important acid resistance strategy than maintaining a specific pHi value.

摘要

由于胃的酸性环境,肠道微生物必须承受极端的酸应激才能定殖并引发疾病。大肠杆菌含有多种耐酸系统,可保护细胞在pH值为2的环境下生存。其中一种耐酸系统,即耐酸系统2(AR2),需要细胞外的谷氨酸,而另一种(AR3)则需要细胞外的精氨酸。关于这些系统如何保护细胞免受酸应激的影响,目前所知甚少。AR2和AR3被认为是通过氨基酸脱羧作用消耗细胞内的质子。然后,反向转运机制将脱羧产物与新的氨基酸底物进行交换。这种质子消耗形式可以维持有利于细胞存活的内部pH值(pHi)。通过估计在pH 2.5条件下受到酸应激的细胞的pHi和跨膜电位(ΔΨ)对该模型进行了测试。在酸应激期间,依赖谷氨酸和精氨酸的系统分别将pHi从3.6提高到4.2和4.7。然而,当在有或没有谷氨酸的情况下将pHi调节到4.0时,只有在有谷氨酸存在的情况下受到应激的培养物能够存活,这表明除了pHi之外,一个生理参数也很重要。对ΔΨ的测量表明,依赖氨基酸的耐酸系统有助于将膜电位从内负外正转变为内正外负,这是一种已知的嗜酸菌在极端酸性环境中生存所采用的策略。因此,逆转ΔΨ可能是一种比维持特定pHi值更重要的耐酸策略。

相似文献

3
Control of acid resistance in Escherichia coli.
J Bacteriol. 1999 Jun;181(11):3525-35. doi: 10.1128/JB.181.11.3525-3535.1999.
5
Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli.
J Bacteriol. 2003 Nov;185(22):6556-61. doi: 10.1128/JB.185.22.6556-6561.2003.
6
Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli.
J Bacteriol. 1995 Jul;177(14):4097-104. doi: 10.1128/jb.177.14.4097-4104.1995.
7
Escherichia coli acid resistance: tales of an amateur acidophile.
Nat Rev Microbiol. 2004 Nov;2(11):898-907. doi: 10.1038/nrmicro1021.
8
Molecular mechanism of pH-dependent substrate transport by an arginine-agmatine antiporter.
Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12734-9. doi: 10.1073/pnas.1414093111. Epub 2014 Aug 18.
9
Protonation of glutamate 208 induces the release of agmatine in an outward-facing conformation of an arginine/agmatine antiporter.
J Biol Chem. 2011 Jun 3;286(22):19693-701. doi: 10.1074/jbc.M110.202085. Epub 2011 Apr 12.
10
Amino acids improve acid tolerance and internal pH maintenance in Bacillus cereus ATCC14579 strain.
Food Microbiol. 2011 May;28(3):364-72. doi: 10.1016/j.fm.2010.09.003. Epub 2010 Sep 16.

引用本文的文献

1
The antibacterial effect of tellurite is achieved through intracellular acidification and magnesium disruption.
mLife. 2025 Aug 24;4(4):423-436. doi: 10.1002/mlf2.70028. eCollection 2025 Aug.
2
Biotechnological Potential of Extremophiles: Environmental Solutions, Challenges, and Advancements.
Biology (Basel). 2025 Jul 11;14(7):847. doi: 10.3390/biology14070847.
4
Transcriptional profiling reveals the effect of arginine on Actinobacillus succinogenes growth and fermentation.
World J Microbiol Biotechnol. 2025 Feb 27;41(3):77. doi: 10.1007/s11274-025-04290-1.
6
Response of to Acid Stress: Mechanisms and Applications-A Narrative Review.
Microorganisms. 2024 Aug 28;12(9):1774. doi: 10.3390/microorganisms12091774.
8
Tradeoffs in bacterial physiology determine the efficiency of antibiotic killing.
Proc Natl Acad Sci U S A. 2023 Dec 19;120(51):e2312651120. doi: 10.1073/pnas.2312651120. Epub 2023 Dec 14.
9
Ribosome profiling reveals the fine-tuned response of to mild and severe acid stress.
mSystems. 2023 Dec 21;8(6):e0103723. doi: 10.1128/msystems.01037-23. Epub 2023 Nov 1.
10
Modeling control and transduction of electrochemical gradients in acid-stressed bacteria.
iScience. 2023 Jun 17;26(7):107140. doi: 10.1016/j.isci.2023.107140. eCollection 2023 Jul 21.

本文引用的文献

1
Secondary active transport mediated by a prokaryotic homologue of ClC Cl- channels.
Nature. 2004 Feb 26;427(6977):803-7. doi: 10.1038/nature02314.
2
Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli.
J Bacteriol. 2003 Nov;185(22):6556-61. doi: 10.1128/JB.185.22.6556-6561.2003.
4
Acid resistance in Escherichia coli.
Adv Appl Microbiol. 2003;52:167-86. doi: 10.1016/s0065-2164(03)01007-4.
5
The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions.
J Food Prot. 2003 Jul;66(7):1292-303. doi: 10.4315/0362-028x-66.7.1292.
7
A biological role for prokaryotic ClC chloride channels.
Nature. 2002 Oct 17;419(6908):715-8. doi: 10.1038/nature01000.
8
9
Rotation of a complex of the gamma subunit and c ring of Escherichia coli ATP synthase. The rotor and stator are interchangeable.
J Biol Chem. 2001 May 4;276(18):15269-74. doi: 10.1074/jbc.M100289200. Epub 2001 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验