Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
BMC Genomics. 2012 Feb 3;13:58. doi: 10.1186/1471-2164-13-58.
The SOS response is a well-known regulatory network present in most bacteria and aimed at addressing DNA damage. It has also been linked extensively to stress-induced mutagenesis, virulence and the emergence and dissemination of antibiotic resistance determinants. Recently, the SOS response has been shown to regulate the activity of integrases in the chromosomal superintegrons of the Vibrionaceae, which encompasses a wide range of pathogenic species harboring multiple chromosomes. Here we combine in silico and in vitro techniques to perform a comparative genomics analysis of the SOS regulon in the Vibrionaceae, and we extend the methodology to map this transcriptional network in other bacterial species harboring multiple chromosomes.
Our analysis provides the first comprehensive description of the SOS response in a family (Vibrionaceae) that includes major human pathogens. It also identifies several previously unreported members of the SOS transcriptional network, including two proteins of unknown function. The analysis of the SOS response in other bacterial species with multiple chromosomes uncovers additional regulon members and reveals that there is a conserved core of SOS genes, and that specialized additions to this basic network take place in different phylogenetic groups. Our results also indicate that across all groups the main elements of the SOS response are always found in the large chromosome, whereas specialized additions are found in the smaller chromosomes and plasmids.
Our findings confirm that the SOS response of the Vibrionaceae is strongly linked with pathogenicity and dissemination of antibiotic resistance, and suggest that the characterization of the newly identified members of this regulon could provide key insights into the pathogenesis of Vibrio. The persistent location of key SOS genes in the large chromosome across several bacterial groups confirms that the SOS response plays an essential role in these organisms and sheds light into the mechanisms of evolution of global transcriptional networks involved in adaptability and rapid response to environmental changes, suggesting that small chromosomes may act as evolutionary test beds for the rewiring of transcriptional networks.
SOS 反应是一种存在于大多数细菌中的著名调控网络,旨在应对 DNA 损伤。它还与应激诱导的突变、毒力以及抗生素耐药决定因素的出现和传播广泛相关。最近,SOS 反应已被证明调节了 Vibrionaceae 染色体超级整合子中整合酶的活性,该家族包含了多种携带多个染色体的致病性物种。在这里,我们结合了计算机和体外技术,对 Vibrionaceae 中的 SOS 调控子进行了比较基因组学分析,并将该方法扩展到了其他携带多个染色体的细菌物种中,以绘制这个转录网络。
我们的分析提供了对一个包含主要人类病原体的家族(Vibrionaceae)中 SOS 反应的首次全面描述。它还确定了几个以前未报道的 SOS 转录网络成员,包括两个未知功能的蛋白质。对其他携带多个染色体的细菌物种中 SOS 反应的分析揭示了额外的调控子成员,并表明存在一个保守的 SOS 基因核心,而这个基本网络的专门添加则发生在不同的进化群中。我们的结果还表明,在所有群体中,SOS 反应的主要元素总是在大染色体中找到,而专门的添加则在较小的染色体和质粒中找到。
我们的研究结果证实,Vibrionaceae 的 SOS 反应与致病性和抗生素耐药性的传播密切相关,并表明对这个调控子中新鉴定成员的特征描述可能为 Vibrio 发病机制提供关键见解。在几个细菌群体中,关键 SOS 基因始终位于大染色体中的这一发现证实,SOS 反应在这些生物体中起着至关重要的作用,并揭示了参与适应性和对环境变化快速反应的全球转录网络进化机制,表明小染色体可能作为转录网络重新布线的进化试验台。