Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, U.P., India.
Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, U.P., India.
Biosci Rep. 2021 Nov 26;41(11). doi: 10.1042/BSR20211419.
Transcriptional repressor, LexA, regulates the 'SOS' response, an indispensable bacterial DNA damage repair machinery. Compared with its Escherichia coli ortholog, LexA from Mycobacterium tuberculosis (Mtb) possesses a unique N-terminal extension of additional 24 amino acids in its DNA-binding domain (DBD) and 18 amino acids insertion at its hinge region that connects the DBD to the C-terminal dimerization/autoproteolysis domain. Despite the importance of LexA in 'SOS' regulation, Mtb LexA remains poorly characterized and the functional importance of its additional amino acids remained elusive. In addition, the lack of data on kinetic parameters of Mtb LexA-DNA interaction prompted us to perform kinetic analyses of Mtb LexA and its deletion variants using Bio-layer Interferometry (BLI). Mtb LexA is seen to bind to different 'SOS' boxes, DNA sequences present in the operator regions of damage-inducible genes, with comparable nanomolar affinity. Deletion of 18 amino acids from the linker region is found to affect DNA binding unlike the deletion of the N-terminal stretch of extra 24 amino acids. The conserved RKG motif has been found to be critical for DNA binding. Overall, the present study provides insights into the kinetics of the interaction between Mtb LexA and its target 'SOS' boxes. The kinetic parameters obtained for DNA binding of Mtb LexA would be instrumental to clearly understand the mechanism of 'SOS' regulation and activation in Mtb.
转录抑制剂 LexA 调节“SOS”反应,这是一种必不可少的细菌 DNA 损伤修复机制。与大肠杆菌的同源物相比,结核分枝杆菌(Mtb)的 LexA 在其 DNA 结合域(DBD)中具有独特的 N 端延伸,额外有 24 个氨基酸,在连接 DBD 和 C 端二聚体/自切割结构域的铰链区有 18 个氨基酸插入。尽管 LexA 在“SOS”调控中很重要,但 Mtb LexA 的特征仍然很差,其额外氨基酸的功能重要性仍然难以捉摸。此外,由于缺乏 Mtb LexA-DNA 相互作用的动力学参数数据,我们使用生物层干涉(BLI)对 Mtb LexA 及其缺失变体进行了动力学分析。发现 Mtb LexA 可以与不同的“ SOS”盒结合,这些盒是损伤诱导基因的操纵子区域中存在的 DNA 序列,具有相当的纳摩尔亲和力。与缺失 N 端的额外 24 个氨基酸不同,从连接区缺失 18 个氨基酸会影响 DNA 结合。保守的 RKG 基序对于 DNA 结合至关重要。总的来说,本研究提供了 Mtb LexA 与其靶“ SOS”盒之间相互作用的动力学见解。获得的 Mtb LexA 的 DNA 结合动力学参数对于清楚地理解 Mtb 中“ SOS”调节和激活的机制将是非常有帮助的。