Suppr超能文献

基于显微镜图像的人体肠道寄生虫自动分割与分类。

Automatic segmentation and classification of human intestinal parasites from microscopy images.

机构信息

Institute of Computing, University of Campinas, São Paulo 13084-971, Brazil.

出版信息

IEEE Trans Biomed Eng. 2013 Mar;60(3):803-12. doi: 10.1109/TBME.2012.2187204. Epub 2012 Feb 6.

Abstract

Human intestinal parasites constitute a problem in most tropical countries, causing death or physical and mental disorders. Their diagnosis usually relies on the visual analysis of microscopy images, with error rates that may range from moderate to high. The problem has been addressed via computational image analysis, but only for a few species and images free of fecal impurities. In routine, fecal impurities are a real challenge for automatic image analysis. We have circumvented this problem by a method that can segment and classify, from bright field microscopy images with fecal impurities, the 15 most common species of protozoan cysts, helminth eggs, and larvae in Brazil. Our approach exploits ellipse matching and image foresting transform for image segmentation, multiple object descriptors and their optimum combination by genetic programming for object representation, and the optimum-path forest classifier for object recognition. The results indicate that our method is a promising approach toward the fully automation of the enteroparasitosis diagnosis.

摘要

人体肠道寄生虫在大多数热带国家都是一个问题,它们会导致死亡或身体和精神障碍。它们的诊断通常依赖于显微镜图像的目视分析,其错误率可能从中等偏高。这个问题已经通过计算图像处理得到了解决,但只针对少数几种寄生虫和没有粪便杂质的图像。在常规情况下,粪便杂质是自动图像分析的一个真正挑战。我们通过一种方法解决了这个问题,该方法可以从带有粪便杂质的明场显微镜图像中分割和分类巴西最常见的 15 种原生动物包囊、蠕虫卵和幼虫。我们的方法利用椭圆匹配和图像森林变换进行图像分割,利用遗传编程对多个目标描述符及其最佳组合进行对象表示,利用最优路径森林分类器进行对象识别。结果表明,我们的方法是实现肠道寄生虫病诊断完全自动化的一种很有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验