Suppr超能文献

细胞间黏附分子 1 的结合调节神经鞘氨醇酶和神经酰胺,从而促进药物载体被血管内皮细胞摄取。

Intercellular adhesion molecule 1 engagement modulates sphingomyelinase and ceramide, supporting uptake of drug carriers by the vascular endothelium.

机构信息

Department of Cell Biology and Molecular Genetics, Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA.

出版信息

Arterioscler Thromb Vasc Biol. 2012 May;32(5):1178-85. doi: 10.1161/ATVBAHA.111.244186. Epub 2012 Feb 9.

Abstract

OBJECTIVE

Engagement of intercellular adhesion molecule 1 (ICAM-1) on endothelial cells by ICAM-1-targeted carriers induces cell adhesion molecule-mediated endocytosis, providing intraendothelial delivery of therapeutics. This pathway differs from classical endocytic mechanisms and invokes aspects of endothelial signaling during inflammation. ICAM-1 interacts with Na(+)/H(+) exchanger NHE1 during endocytosis, but it is unclear how this regulates plasmalemma and cytoskeletal changes. We studied such aspects in this work.

METHODS AND RESULTS

We used fluorescence and electron microscopy, inhibitors and knockout tools, cell culture, and mouse models. ICAM-1 engagement by anti-ICAM carriers induced sphingomyelin-enriched engulfment structures. Acid sphingomyelinase (ASM), an acidic enzyme that hydrolyzes sphingomyelin into ceramide (involved in plasmalemma deformability and cytoskeletal reorganization), redistributed to ICAM-1-engagement sites at ceramide-enriched areas. This induced actin stress fibers and carrier endocytosis. Inhibiting ASM impaired ceramide enrichment, engulfment structures, cytoskeletal reorganization, and carrier uptake, which was rescued by supplying this enzyme activity exogenously. Interfering with NHE1 rendered similar outcomes, suggesting that Na(+)/H(+) exchange might provide an acidic microenvironment for ASM at the plasmalemma.

CONCLUSIONS

These findings are consistent with the ability of endothelial cells to internalize relatively large ICAM- 1--targeted drug carriers and expand our knowledge on the regulation of the sphingomyelin/ceramide pathway by the vascular endothelium.

摘要

目的

细胞间黏附分子 1(ICAM-1)与内皮细胞上的 ICAM-1 靶向载体结合,诱导细胞黏附分子介导的内吞作用,从而实现治疗药物向内皮细胞内的递送。该途径不同于经典的内吞机制,并在炎症过程中引发内皮信号转导的某些方面。ICAM-1 在胞吞作用过程中与 Na(+)/H(+)交换器 NHE1 相互作用,但尚不清楚这如何调节质膜和细胞骨架的变化。我们在这项工作中研究了这些方面。

方法和结果

我们使用荧光和电子显微镜、抑制剂和基因敲除工具、细胞培养和小鼠模型。抗 ICAM 载体与 ICAM-1 的结合诱导了富含鞘磷脂的吞噬结构。酸性鞘磷脂酶(ASM)是一种酸性酶,可将鞘磷脂水解为神经酰胺(参与质膜变形和细胞骨架重组),在富含神经酰胺的区域重新分布到与 ICAM-1 结合的部位。这诱导了肌动蛋白应力纤维和载体内吞作用。抑制 ASM 会损害神经酰胺的富集、吞噬结构、细胞骨架重组和载体摄取,而通过外源提供这种酶活性可以挽救这些结果。干扰 NHE1 会产生类似的结果,这表明 Na(+)/H(+) 交换可能为质膜上的 ASM 提供酸性微环境。

结论

这些发现与内皮细胞内化相对较大的 ICAM-1 靶向药物载体的能力一致,并扩展了我们对血管内皮细胞调节鞘磷脂/神经酰胺途径的认识。

相似文献

1
Intercellular adhesion molecule 1 engagement modulates sphingomyelinase and ceramide, supporting uptake of drug carriers by the vascular endothelium.
Arterioscler Thromb Vasc Biol. 2012 May;32(5):1178-85. doi: 10.1161/ATVBAHA.111.244186. Epub 2012 Feb 9.
2
ICAM-1 and nanomedicine: nature's doorway to the extravascular tissue realm.
Arterioscler Thromb Vasc Biol. 2012 May;32(5):1070-1. doi: 10.1161/ATVBAHA.112.246850.
5
Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1.
J Control Release. 2012 Feb 10;157(3):485-92. doi: 10.1016/j.jconrel.2011.09.067. Epub 2011 Sep 16.
7
8
Lysosomal enzyme delivery by ICAM-1-targeted nanocarriers bypassing glycosylation- and clathrin-dependent endocytosis.
Mol Ther. 2006 Jan;13(1):135-41. doi: 10.1016/j.ymthe.2005.07.687. Epub 2005 Sep 8.

引用本文的文献

1
New Cellular Models to Support Preclinical Studies on ICAM-1-Targeted Drug Delivery.
J Drug Deliv Sci Technol. 2024 Nov;101(Pt A). doi: 10.1016/j.jddst.2024.106170. Epub 2024 Sep 10.
3
Effect of acid sphingomyelinase deficiency in type A Niemann-Pick disease on the transport of therapeutic nanocarriers across the blood-brain barrier.
Drug Deliv Transl Res. 2023 Dec;13(12):3077-3093. doi: 10.1007/s13346-023-01374-z. Epub 2023 Jun 21.
5
Current perspectives on clinical use of exosomes as novel biomarkers for cancer diagnosis.
Front Oncol. 2022 Aug 31;12:966981. doi: 10.3389/fonc.2022.966981. eCollection 2022.
6
Anti-atherosclerotic therapies: Milestones, challenges, and emerging innovations.
Mol Ther. 2022 Oct 5;30(10):3106-3117. doi: 10.1016/j.ymthe.2022.08.024. Epub 2022 Sep 5.
7
Altered blood-brain barrier transport of nanotherapeutics in lysosomal storage diseases.
J Control Release. 2022 Sep;349:1031-1044. doi: 10.1016/j.jconrel.2022.07.022. Epub 2022 Aug 17.
8
Nanotechnology for Targeted Therapy of Atherosclerosis.
Front Pharmacol. 2021 Nov 12;12:755569. doi: 10.3389/fphar.2021.755569. eCollection 2021.
9
A Comparative Proteomic Analysis of Extracellular Vesicles Associated With Lipotoxicity.
Front Cell Dev Biol. 2021 Nov 4;9:735001. doi: 10.3389/fcell.2021.735001. eCollection 2021.
10
Impact of native and external factors on exosome release: understanding reactive exosome secretion and its biogenesis.
Mol Biol Rep. 2021 Nov;48(11):7559-7573. doi: 10.1007/s11033-021-06733-y. Epub 2021 Oct 9.

本文引用的文献

1
Effect of flow on endothelial endocytosis of nanocarriers targeted to ICAM-1.
J Control Release. 2012 Feb 10;157(3):485-92. doi: 10.1016/j.jconrel.2011.09.067. Epub 2011 Sep 16.
3
Acid sphingomyelinase deficiency attenuates bleomycin-induced lung inflammation and fibrosis in mice.
Cell Physiol Biochem. 2010;26(4-5):749-60. doi: 10.1159/000322342. Epub 2010 Oct 29.
4
Enhanced endothelial delivery and biochemical effects of α-galactosidase by ICAM-1-targeted nanocarriers for Fabry disease.
J Control Release. 2011 Feb 10;149(3):323-31. doi: 10.1016/j.jconrel.2010.10.031. Epub 2010 Nov 1.
5
Optimizing endothelial targeting by modulating the antibody density and particle concentration of anti-ICAM coated carriers.
J Control Release. 2011 Feb 28;150(1):37-44. doi: 10.1016/j.jconrel.2010.10.025. Epub 2010 Nov 1.
7
Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair.
J Cell Biol. 2010 Jun 14;189(6):1027-38. doi: 10.1083/jcb.201003053. Epub 2010 Jun 7.
8
Acid sphingomyelinase, cell membranes and human disease: lessons from Niemann-Pick disease.
FEBS Lett. 2010 May 3;584(9):1895-900. doi: 10.1016/j.febslet.2009.11.083. Epub 2009 Nov 26.
9
Roles and regulation of secretory and lysosomal acid sphingomyelinase.
Cell Signal. 2009 Jun;21(6):836-46. doi: 10.1016/j.cellsig.2009.01.026.
10
Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway.
Arterioscler Thromb Vasc Biol. 2009 Feb;29(2):254-60. doi: 10.1161/ATVBAHA.108.176347. Epub 2008 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验