Suppr超能文献

使用高斯混合模型的无监督自动白质纤维聚类

UNSUPERVISED AUTOMATIC WHITE MATTER FIBER CLUSTERING USING A GAUSSIAN MIXTURE MODEL.

作者信息

Liu Meizhu, Vemuri Baba C, Deriche Rachid

机构信息

Department of CISE, University of Florida, Gainesville, FL, 32611, USA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2012 Jul 12;2012(9):522-525. doi: 10.1109/ISBI.2012.6235600.

Abstract

Fiber tracking from diffusion tensor images is an essential step in numerous clinical applications. There is a growing demand for an accurate and efficient framework to perform quantitative analysis of white matter fiber bundles. In this paper, we propose a robust framework for fiber clustering. This framework is composed of two parts: accessible fiber representation, and a statistically robust divergence measure for comparing fibers. Each fiber is represented using a Gaussian mixture model (GMM), which is the linear combination of Gaussian distributions. The dissimilarity between two fibers is measured using the total square loss function between their corresponding GMMs (which is statistically robust). Finally, we perform the hierarchical total Bregman soft clustering algorithm on the GMMs, yielding clustered fiber bundles. Further, our method is able to determine the number of clusters automatically. We present experimental results depicting favorable performance of our method on both synthetic and real data examples.

摘要

基于扩散张量图像的纤维追踪是众多临床应用中的关键步骤。对于执行白质纤维束定量分析的准确且高效框架的需求日益增长。在本文中,我们提出了一种用于纤维聚类的稳健框架。该框架由两部分组成:可访问的纤维表示,以及用于比较纤维的统计稳健散度度量。每条纤维使用高斯混合模型(GMM)进行表示,高斯混合模型是高斯分布的线性组合。两条纤维之间的差异使用它们相应高斯混合模型之间的总平方损失函数来度量(这在统计上是稳健的)。最后,我们对高斯混合模型执行分层总布雷格曼软聚类算法,得到聚类的纤维束。此外,我们的方法能够自动确定聚类的数量。我们展示的实验结果表明我们的方法在合成数据和真实数据示例上均具有良好性能。

相似文献

1
UNSUPERVISED AUTOMATIC WHITE MATTER FIBER CLUSTERING USING A GAUSSIAN MIXTURE MODEL.
Proc IEEE Int Symp Biomed Imaging. 2012 Jul 12;2012(9):522-525. doi: 10.1109/ISBI.2012.6235600.
2
4
Shape retrieval using hierarchical total Bregman soft clustering.
IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2407-19. doi: 10.1109/TPAMI.2012.44.
5
Co-registration of white matter tractographies by adaptive-mean-shift and Gaussian mixture modeling.
IEEE Trans Med Imaging. 2010 Jan;29(1):132-45. doi: 10.1109/TMI.2009.2029097. Epub 2009 Aug 25.
6
Combined Gaussian Mixture Model and Pathfinder Algorithm for Data Clustering.
Entropy (Basel). 2023 Jun 16;25(6):946. doi: 10.3390/e25060946.
7
Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways.
Med Image Anal. 2018 May;46:130-145. doi: 10.1016/j.media.2018.02.008. Epub 2018 Feb 27.
8
An automated string-based approach to extracting and characterizing White Matter fiber-bundles.
Comput Biol Med. 2016 Oct 1;77:64-75. doi: 10.1016/j.compbiomed.2016.07.015. Epub 2016 Jul 30.
9
Functional clustering of whole brain white matter fibers.
J Neurosci Methods. 2020 Apr 1;335:108626. doi: 10.1016/j.jneumeth.2020.108626. Epub 2020 Feb 4.

引用本文的文献

1
TRAKO: Efficient Transmission of Tractography Data for Visualization.
Med Image Comput Comput Assist Interv. 2020 Oct;12267:322-332. doi: 10.1007/978-3-030-59728-3_32. Epub 2020 Sep 29.
2
Cancer imaging phenomics toolkit: quantitative imaging analytics for precision diagnostics and predictive modeling of clinical outcome.
J Med Imaging (Bellingham). 2018 Jan;5(1):011018. doi: 10.1117/1.JMI.5.1.011018. Epub 2018 Jan 11.
3
A volumetric conformal mapping approach for clustering white matter fibers in the brain.
Spectr Shape Anal Med Imaging (2016). 2016 Oct;10126:3-14. doi: 10.1007/978-3-319-51237-2_1. Epub 2016 Dec 11.
4
Automated tract extraction via atlas based Adaptive Clustering.
Neuroimage. 2014 Nov 15;102 Pt 2(0 2):596-607. doi: 10.1016/j.neuroimage.2014.08.021. Epub 2014 Aug 15.

本文引用的文献

1
A robust variational approach for simultaneous smoothing and estimation of DTI.
Neuroimage. 2013 Feb 15;67:33-41. doi: 10.1016/j.neuroimage.2012.11.012. Epub 2012 Nov 17.
2
Shape retrieval using hierarchical total Bregman soft clustering.
IEEE Trans Pattern Anal Mach Intell. 2012 Dec;34(12):2407-19. doi: 10.1109/TPAMI.2012.44.
3
Fiber modeling and clustering based on neuroanatomical features.
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):17-24. doi: 10.1007/978-3-642-23629-7_3.
4
Total Bregman divergence and its applications to DTI analysis.
IEEE Trans Med Imaging. 2011 Feb;30(2):475-83. doi: 10.1109/TMI.2010.2086464. Epub 2010 Oct 14.
5
Large Deformation Diffeomorphic Metric Curve Mapping.
Int J Comput Vis. 2008 Dec 1;80(3):317-336. doi: 10.1007/s11263-008-0141-9.
6
Clustering Fiber Traces Using Normalized Cuts.
Med Image Comput Comput Assist Interv. 2004 Sep 2;3216/2004(3216):368-375. doi: 10.1007/b100265.
8
A hybrid approach to automatic clustering of white matter fibers.
Neuroimage. 2010 Jan 15;49(2):1249-58. doi: 10.1016/j.neuroimage.2009.08.017. Epub 2009 Aug 13.
9
Segregating the core computational faculty of human language from working memory.
Proc Natl Acad Sci U S A. 2009 May 19;106(20):8362-7. doi: 10.1073/pnas.0810928106. Epub 2009 May 4.
10
A unified framework for clustering and quantitative analysis of white matter fiber tracts.
Med Image Anal. 2008 Apr;12(2):191-202. doi: 10.1016/j.media.2007.10.003. Epub 2007 Oct 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验