Liu Meizhu, Vemuri Baba C, Deriche Rachid
Department of CISE, University of Florida, Gainesville, FL, 32611, USA.
Proc IEEE Int Symp Biomed Imaging. 2012 Jul 12;2012(9):522-525. doi: 10.1109/ISBI.2012.6235600.
Fiber tracking from diffusion tensor images is an essential step in numerous clinical applications. There is a growing demand for an accurate and efficient framework to perform quantitative analysis of white matter fiber bundles. In this paper, we propose a robust framework for fiber clustering. This framework is composed of two parts: accessible fiber representation, and a statistically robust divergence measure for comparing fibers. Each fiber is represented using a Gaussian mixture model (GMM), which is the linear combination of Gaussian distributions. The dissimilarity between two fibers is measured using the total square loss function between their corresponding GMMs (which is statistically robust). Finally, we perform the hierarchical total Bregman soft clustering algorithm on the GMMs, yielding clustered fiber bundles. Further, our method is able to determine the number of clusters automatically. We present experimental results depicting favorable performance of our method on both synthetic and real data examples.
基于扩散张量图像的纤维追踪是众多临床应用中的关键步骤。对于执行白质纤维束定量分析的准确且高效框架的需求日益增长。在本文中,我们提出了一种用于纤维聚类的稳健框架。该框架由两部分组成:可访问的纤维表示,以及用于比较纤维的统计稳健散度度量。每条纤维使用高斯混合模型(GMM)进行表示,高斯混合模型是高斯分布的线性组合。两条纤维之间的差异使用它们相应高斯混合模型之间的总平方损失函数来度量(这在统计上是稳健的)。最后,我们对高斯混合模型执行分层总布雷格曼软聚类算法,得到聚类的纤维束。此外,我们的方法能够自动确定聚类的数量。我们展示的实验结果表明我们的方法在合成数据和真实数据示例上均具有良好性能。